PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of quality function deployment (QFD) and axiomatic design method for product design: study case compost waste product

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In Tempe SMES, some organic waste was found, namely the remaining soybean milling. Unfortunately, waste management by the owner is to dispose of it or sell it to farmers for feed. The researcher proposes to create a product that can grind organic waste into fertiliser by designing compost waste products that produce fertiliser. Design/methodology/approach: QFD and AD approaches are used in product design. QFD is used to identify customer requirements as product features and examine technical qualities that are a priority for development. Meanwhile, the AD method is used to satisfy all functional needs. Findings: Based on the data processing results, some conclusions can be drawn as follows: Degree of Importance: all technical characteristics are important except for the length of assembly and the time of painting, which is quite important. All the technical characteristics are expensive. The results of the HoQ analysis show three characteristics of composter products have the greatest importance weight, namely: product composition with a significance level of 19%, strength of the circuit with a significance level of 18% and length of measurement with a significance level of 18%, the above requirements are then converted into functional needs or Functional Requirements (FR) in axiomatic design processing. The new design improvements show a decline in information content value by 0.0531. This shows that the design is better than the actual current conditions. Research limitations/implications: These two methods can be applied to other research to find another alternative creative solution in designing a new product. Practical implications: Combining these methods enables a new creative product design solution to be found. Originality/value: The combination method allows a product designer to design a new product with a better and higher value than an original product.
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Department of Industrial Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia
autor
  • Department of Industrial Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia
autor
  • Department of Mechanical Engineering Education, Faculty of Engineering, Universitas Negeri Medan, Medan, Indonesia
Bibliografia
  • [1] S. Gunes, Design Entrepreneurship in Product Design Education, Procedia - Social and Behavioral Sciences 51 (2012) 64-68. DOI: https://doi.org/10.1016/j.sbspro.2012.08.119
  • [2] S.K. Chandrasegaran, K. Ramani, R.D. Sriram, I. Horváth, A. Bernard, R.F. Harik, W. Gao, The evolution, challenges, and future of knowledge representation in product design systems, Computer-Aided Design 45/2 (2013) 204-228. DOI: https://doi.org/10.1016/j.cad.2012.08.006
  • [3] S. Eppinger, The Fundamental Challenge of Product Design, Journal of Product Innovation Management 28/3 (2011) 399-400. DOI: https://doi.org/10.1111/j.1540-5885.2011.00810.x
  • [4] R. Dekkers, C.M. Chang, J. Kreutzfeldt, The interface between “product design and engineering” and manufacturing: A review of the literature and empirical evidence, International Journal of Production Economics 144/1 (2013) 316-333. DOI: https://doi.org/10.1016/j.ijpe.2013.02.020
  • [5] A. Cerda, A. Artola, X. Font, R. Barrena, T. Gea, A. Sánchez, Composting of food wastes: Status and challenges, Bioresource Technology 248/A (2018) 57- 67. DOI: https://doi.org/10.1016/j.biortech.2017.06.133
  • [6] P. Partanen, J. Hultman, L. Paulin, P. Auvinen, M. Romantschuk, Bacterial diversity at different stages of the composting process, BMC Microbiology 10 (2010) 94. DOI: https://doi.org/10.1186/1471-2180-10-94
  • [7] J. Colón, J. Martínez-Blanco, X. Gabarrell, A. Artola, A. Sánchez, J. Rieradevall, X. Font, Environmental assessment of home composting, Resources, Conservation and Recycling 54/11 (2010) 893-904. DOI: https://doi.org/10.1016/j.resconrec.2010.01.008
  • [8] R. Barrena, X. Font, X. Gabarrell, A. Sánchez, Home composting versus industrial composting: Influence of composting system on compost quality with focus on compost stability, Waste Management 34/7 (2014) 1109-1116. DOI: https://doi.org/10.1016/j.wasman.2014.02.008
  • [9] M. Pergola, A. Persiani, A.M. Palese, V. Di Meo, V. Pastore, C. D’Adamo, G. Celano, Composting: The way for a sustainable agriculture, Applied Soil Ecology 123 (2018) 744-750. DOI: https://doi.org/10.1016/j.apsoil.2017.10.016
  • [10] A.M. Taiwo, Composting as A Sustainable Waste Management Technique in Developing Countries, Journal of Environmental Science and Technology 4/2 (2011) 93-102. DOI: https://doi.org/10.3923/jest.2011.93.102
  • [11] M. K. Kwofie, N. Bukari, O. Adeboye, Probiotics potential of yeast and lactic acid bacteria fermented foods and the impact of processing: a review of indigenous and continental food products, Advances in Microbiology 10/9 (2020) 492-507. DOI: https://doi.org/10.4236/aim.2020.109037
  • [12] H. E. Nurseto, M.A. Fahmi, Analyzing the behavior toward Tempeh waste management at the home-scale industry level in Tempeh Village Sukomanunggal Surabaya. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering 6/2 (2023) 142-152. DOI: https://doi.org/10.21776/ub.afssaae.2023.006.02.5
  • [13] D.M. Camelo, E. Mulet, A multi-relational and interactive model for supporting the design process in the conceptual phase, Automation in Construction 19/7 (2010) 964-974. DOI: https://doi.org/10.1016/j.autcon.2010.07.013
  • [14] D.-B. Luh, Y.-T. Ko, C.-H. Ma, A structural matrix- based modelling for designing product variety, Journal of Engineering Design 22/1 (2011) 1-29. DOI: https://doi.org/10.1080/09544820902877591
  • [15] A. Ishak, R. Ginting, A.F. Malik, Integration of quality function deployment (QFD) and value engineering in improving the quality of product: A literature review, AIP Conference Proceedings 2217 (2020) 030158. DOI: https://doi.org/10.1063/5.0000735
  • [16] Y. Shen, J. Zhou, A.A. Pantelous, Y. Liu, Z. Zhang, A voice of the customer real-time strategy: An integrated quality function deployment approach, Computers and Industrial Engineering 169 (2022) 108233. DOI: https://doi.org/10.1016/j.cie.2022.108233
  • [17] N.P. Suh, The principles of design, Oxford University Press, New York, 1990.
  • [18] E.S. Jaiswal, A Case Study on Quality Function Deployment (QFD), IOSR Journal of Mechanical and Civil Engineering 3/6 (2012) 27-35. DOI: https://doi.org/10.9790/1684-0362735
  • [19] L. Cohen, Quality Function Deployment How to Make QFD Work For You, Addison-Wesley Publishing Company, New York, 1995.
  • [20] V. Krishnan, K.T. Ulrich, Product Development Decisions: A Review of the Literature. Management Science 47/1 (2001) 1-21.
  • [21] L.D. Miles, Techniques of Value Analysis and Engineering, McGraw Hill, New York, 1961.
  • [22] J. Yan, W. Luo, J. Wang, W. Yang, Y. Ma, D. Jiang, J. Jia, Application of the quality function deployment method in the mechanical structure design of subsea power devices, Ocean Engineering 247 (2022) 110536. DOI: https://doi.org/10.1016/j.oceaneng.2022.110536
  • [23] D. Baier, M. Brusch, Linking Quality Function Deployment and Conjoint Analysis for New Product Design, in: D. Baier, R. Decker, L. Schmidt-Thieme (eds), Data Analysis and Decision Support. Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Berlin, Heidelberg, 2005, 189- 198. DOI: https://doi.org/10.1007/3-540-28397-8_21
  • [24] T. Lager, A conceptual framework for platform-based design of non-assembled products, Technovation 68 (2017) 20-34. DOI: https://doi.org/10.1016/j.technovation.2017.09.002
  • [25] S. Sugiono, A. Pratomo, W.S. Nugroho, House-of- Quality Approach for the Design of a Minibus to Transport Visually, International Journal of Technology 13/1 (2022) 69-79. DOI: https://doi.org/10.14716/ijtech.v13i1.4290
  • [26] R. Ginting, U. Tarigan, N. Panjaitan, Integration of Quality Function Deployment and Value Engineering: A Case Study of Designing A Texon Cutting Tool, Songklanakarin Journal of Science and Technology 42/4 (2020) 771-779.
  • [27] X. Deng, W. Jiang, An Evidential Axiomatic Design Approach for Decision Making Using the Evaluation of Belief Structure Satisfaction to Uncertain Target Values, International Journal of Intelligent Systems 33/1 (2018) 15-32. DOI: https://doi.org/10.1002/int.21929
  • [28] M.K. Thompson, Improving the requirements process in Axiomatic Design Theory, CIRP Annals 62/1 (2013) 115-118. DOI: https://doi.org/10.1016/j.cirp.2013.03.114
  • [29] M. Nordlund, S.G. Kim, D. Tate, T. Lee, H.L. Oh, Axiomatic design: making the abstract concrete, Procedia CIRP 50 (2016) 216-221. DOI: https://doi.org/10.1016/j.procir.2016.04.146
  • [30] K. Yang, B. El-Haik, Design for six sigma. A Roadmap for Product Development, McGraw-Hill, New York, 2003, 184-186.
  • [31] Y. Du, H. Cao, X. Chen, B. Wang, Reuse-oriented redesign method of used products based on axiomatic design theory and QFD, Journal of Cleaner Production 39 (2013) 79-86. DOI: https://doi.org/10.1016/j.jclepro.2012.08.032
  • [32] H.R. Fazeli, Q. Peng, Generation and evaluation of product concepts by integrating extended axiomatic design, quality function deployment and design structure matrix, Advanced Engineering Informatics 54 (2022) 101716. DOI: https://doi.org/10.1016/j.aei.2022.101716
  • [33] V. Lapinskienė, V. Motuzienė, Integrated building design technology based on quality function deployment and axiomatic design methods: A case study, Sustainable Cities and Society 65 (2021) 102631. DOI: https://doi.org/10.1016/j.scs.2020.102631
  • [34] E. Rauch, P.R. Spena, D.T. Matt, Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs, International Journal on Interactive Design and Manufacturing 13 (2019) 1-22. DOI: https://doi.org/10.1007/s12008-018-0460-1
  • [35] L.G. Beng, B. Omar, Integrating axiomatic design principles into sustainable product development, International Journal of Precision Engineering and Manufacturing-Green Technology 1 (2014) 107-117. DOI: https://doi.org/10.1007/s40684-014-0015-2
  • [36] E. Tarcan, A.K. Kar, An axiomatic design approach to multi-objective optimization, Proceedings of the 10 th Biennial Conference on Engineering Systems Design and Analysis “ASME 2010”, Istanbul, 2010, Vol. 4, 539- 544. DOI: https://doi.org/10.1115/ESDA2010-25097
  • [37] H. Yamashina, T. Ito, H. Kawada, Innovative product development process by integrating QFD and TRIZ, International Journal of Production Research 40/5(2002) 1031-1050. DOI: https://doi.org/10.1080/00207540110098490
  • [38] L.R. Gilbert III, M. Omar, M.A. Farid, An Integrated QFD and Axiomatic Design methodology for the satisfaction of temporary housing stakeholders, Proceedings of the 8 th International Conference on Axiomatic Design “ICAD 2014”, Caparica, 2014, 71-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73c57e1f-7754-4617-9766-d2592c3ba147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.