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Abstract. In this paper, we study the qualitative behavior of
the solutions to second-order neutral delay differential equations
of the form(

r(t)
((
x(t) + p(t)x(τ(t))

)′)γ)′
+ q(t)f (x(σ(t))) = 0.

Our main tool is Lebesgue’s dominated convergence theorem. Ex-
amples illustrating the applicability of the results are also given.
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1. Introduction

Consider the class of nonlinear neutral delay differential equations of the
form:

(1)
(
r(z′γ

)′
(t) + q(t)f (x(σ(t))) = 0,

where z(t) = x(t)+p(t)x(τ(t)) and γ is the ratio of two odd positive integers.
We assume the following conditions hold.

(C1) r, q, τ, σ ∈ C(R+,R+) such that τ(t) ≤ t, σ(t) ≤ t for t ≥ t0, τ(t) → ∞,
σ(t) → ∞ as t → ∞;

(C2) f ∈ C(R,R) is non-decreasing with vf(v) > 0 for v ̸= 0;

(C3) r(t) > 0 and
∫∞
0

(
r(η)

)−1/γ
dη = ∞. By letting Π(t) =

∫ t
0

(
r(η)

)−1/γ
dη,

we have limt→∞Π(t) = ∞;
(C4) p ∈ C(R+,R−) with −1 + (2/3)1/γ ≤ −a ≤ p(t) ≤ 0 for t ∈ R+;
(C5) p ∈ C(R+,R−) with −1 < −a ≤ p(t) ≤ 0 for t ∈ R+.

As examples, the functions f(u) = uγ with γ being the ratio of two pos-
itive integers and r(t) = e−t or r(t) = 1 satisfy (C2) and (C3), respectively.
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In 1978, Brands [2] showed that for bounded delays, the solutions to

x′′(t) + q(t)x(t− σ(t)) = 0

are oscillatory, if and only if, the solutions to x′′(t) + q(t)x(t) = 0 are oscil-
latory. Baculikova et al. [3] have studied the linear counterpart of (1) for
0 ≤ p(t) ≤ p0 < ∞ and (C3). They have obtained sufficient conditions for
the oscillation of the solutions of the linear counterpart of (1), using compar-
ison techniques. Recently, Chatzarakis et al. [7] have established sufficient
conditions for the oscillation and asymptotic behavior of all solutions of
second-order half-linear differential equations of the form(

r(x′)α
)′
(t) + q(t)xα(σ(t)) = 0.(2)

In an another paper, Chatzarakis et al. [8] have considered (2) and estab-
lished new oscillation criteria. Džurina [9] has studied the linear counterpart
of (1) when 0 ≤ p(t) ≤ p0 < ∞ and (C3) and has established sufficient con-
ditions for the oscillation of the solutions of the linear counterpart of (1)
by comparison techniques. Karpuz and Santra [12] have obtained several
sufficient conditions for the oscillatory and asymptotic behavior of the solu-
tions of (1), for different ranges of p. Pinelas and Santra [15] have studied
necessary and sufficient conditions for the solutions of

(
x(t) + p(t)x(t− τ)

)′
+

m∑
i=1

qi(t)f
(
x(t− σi)

)
= 0.

Wong [20] established necessary and sufficient conditions for the oscillation
of the solutions to(

x(t) + px(t− τ)
)′′

+ q(t)f(t− σ) = 0,

where the constant p satisfies −1 < p < 0. Grace et al. [10] have studied
(1) and established sufficient conditions for 0 ≤ p(t) < 1. For further work
on the oscillation of the solutions to this type of equations, we refer the
readers to [1, 4, 5, 14, 16, 21, 22] and the references cited therein. Note that
the majority of publications consider only sufficient conditions, and merely a
few consider necessary and sufficient conditions. Hence, the objective in this
work is to establish both necessary and sufficient conditions for the oscilla-
tory and asymptotic behavior of solutions of (1) without using comparison
techniques.

In this paper, we restrict our attention to the study of (1), which includes
the class of nonlinear functional differential equations of neutral type.

By a solution to equation (1), we mean a function x ∈ C([Tx,∞),R),
where Tx ≥ t0, such that rz′ ∈ C1([Tx,∞),R), and satisfies (1) on the
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interval [Tx,∞). A solution x of (1) is said to be proper if x is not identically
zero eventually, i.e., sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that
(1) possesses such solutions. A solution of (1) is called oscillatory if it has
arbitrarily large zeros on [Tx,∞); otherwise, it is said to be non-oscillatory.
(1) itself is said to be oscillatory if all of its solutions are oscillatory.

Remark 1. When the domain is not specified explicitly, all functional
inequalities considered in this paper are assumed to hold eventually, i.e.,
they are satisfied for all t large enough.

2. Preliminaries

Lemma 1. Assume that (C1)–(C3) and (C4) or (C5) hold, and x is an
eventually positive solution of (1). Then we have

(i) z(t) < 0 z′(t) > 0 and (r(z′)γ)′(t) < 0;
(ii) z(t) > 0 z′(t) > 0 and (r(z′)γ)′(t) < 0

for sufficiently large t.

Proof. Suppose that there exists a t1 ≥ t0 such that x(t) > 0, x(τ(t)),
and x(σ(t)) > 0 for t ≥ t1. From (1) and (C2), we have

(3) (r(z′)γ)′(t) = −q(t)f
(
x(σ(t))

)
< 0 for t ≥ t1,

which means that
(
r(z′)γ

)
(t) is non increasing on [t1,∞). Since r(t) > 0,

and thus either z′(t) < 0 or z′(t) > 0 for t ≥ t2, where t2 ≥ t1.
If z′(t) > 0 for t ≥ t2, then we have (i) and (ii). We prove now that

z′(t) < 0 can not occur.
If z′(t) < 0 for t ≥ t2, then there exists κ1 > 0 such that

(
r(z′)γ

)
(t) ≤ −κ1

for t ≥ t2, which yields upon integration over [t2, t) ⊂ [t2,∞) after dividing
through by r that

(4) z(t) ≤ z(t2)− κ
1/γ
1

∫ t

t2

(
r(η)

)−1/γ
dη for t ≥ t2.

By virtue of condition (C3), limt→∞ z(t) = −∞. We consider now the
following possibilities separately.

If x is unbounded, then there exists a sequence {tk} such that limk→∞ tk =
∞ and limk→∞ x(tk) = ∞, where x(tk) = max{x(η); t0 ≤ η ≤ tk}. Since
limt→∞ τ(t) = ∞, τ(tk) > t0 for all sufficiently large k. By τ(t) ≤ t,

x
(
τ(tk)

)
= max{x(η); t0 ≤ η ≤ τ(tk)} ≤ max{x(η); t0 ≤ η ≤ tk} = x(tk).
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Therefore, for all large k,

z(tk) = x(tk) + p(tk)x
(
τ(tk)

)
≥ (1 + p(tk))x(tk) > 0,

If x is bounded, then z is also bounded, which contradicts limt→∞ z(t) =
−∞. Hence, z satisfies one of the cases (i) or (ii).

This completes the proof. �

Lemma 2. Assume that (C1)–(C3), (C4) or (C5) and (i) hold, and x is
an eventually positive solution of (1). Then, limt→∞ x(t) = 0.

Proof. Suppose that there exists a t1 ≥ t0 such that x(t) > 0, x(τ(t)),
and x(σ(t)) > 0 for t ≥ t1. Then, Lemma 1 holds and z satisfies one of
the cases (i) or (ii) for t2 ≥ t1, where t ≥ t2. Let z satisfies (i) for t ≥ t2.
Therefore,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t) ≥ lim sup
t→∞

(
x(t)− ax(τ(t))

)
≥ lim sup

t→∞
x(t) + lim inf

t→∞

(
−ax(τ(t))

)
= (1− a) lim sup

t→∞
x(t)

which implies that lim supt→∞ x(t) = 0 and hence limt→∞ x(t) = 0. �

Remark 2. In view of (ii) of Lemma 1, it is obvious that limt→∞ z(t) >
0, i.e., there exists κ > 0 such that z(t) ≥ κ for all large t.

3. Main results

3.1. Non-increasing f(v)/vβ

We assume that there exists a constant β such that 0 < β < γ and

(5)
f(v)

vβ
≥ f(u)

uβ
, for 0 < v ≤ u .

Theorem 1. Assume that (C1)–(C4) and (5) hold. Then every un-
bounded solution of (1) oscillates if and only if∫ ∞

T
q(η)f

(
κ1/γΠ(σ(η))

)
dη = +∞ ∀T > 0 and κ > 0.(6)

Proof. To prove sufficiency assume, for the sake of contradiction, that
there exists a non-oscillatory unbounded solution x(t) of (1). Suppose that
x(t) is eventually positive. Then there exists t1 ≥ t0 such that x(t) > 0,
x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof
of Lemma 1, we see

(
r(z′)γ

)
(t) is non-increasing, and z satisfies one of the
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cases (i) or (ii) on [t2,∞), where t2 ≥ t1. Then, there exist two possible
cases.

Case 1. Let z satisfies (i) for t ≥ t2. As x is unbounded, there exists
T ≥ t2 such that x(T ) = max{x(η) : t2 ≤ η ≤ T}. Since z(t) = x(t) +
p(t)x(τ(t)), we have x(T ) ≤ z(T ) + {1− (2/3)1/γ}x(τ(T )) < x(T ), which is
a contradiction.

Case 2. Let z satisfies (ii) for t ≥ t2. Note that limt→∞
(
r(z′)γ

)
(t)

exists. Using z(t) ≤ x(t) in (1) and integrating the final inequality from t
to +∞, we obtain ∫ ∞

t
q(η)f

(
z(σ(η))

)
dη ≤

(
r(z′)γ

)
(t) .

That is

(7) z′(t) ≥
[ 1

r(t)

∫ ∞

t
q(η)f

(
z(σ(η))

)
dη

]1/γ
for t ≥ t3. Let t4 > t3 be a point such that

Π(t)−Π(t3) ≥
1

2
Π(t), t ≥ t4.

Then integrating (7) from t3 to t, we get

z(t)− z(t3) ≥
∫ t

t3

[ 1

r(η)

∫ ∞

η
q(ζ)f

(
z(σ(ζ))

)
dζ

]1/γ
dη(8)

≥
∫ t

t3

[ 1

r(η)

∫ ∞

t
q(ζ)f

(
z(σ(ζ))

)
dζ

]1/γ
dη,

i.e.,

z(t) ≥
(
Π(t)−Π(t3)

)[ ∫ ∞

t
q(ζ)f

(
z(σ(ζ))

)
dζ

]1/γ
(9)

≥ 1

2
Π(t)

[ ∫ ∞

t
q(ζ)f

(
z(σ(ζ))

)
dζ

]1/γ
.

Using the fact that
(
r(z′)γ

)
(t) is non-increasing on [t4,∞), we can find a

constant κ > 0 and t5 > t4 such that
(
r(z′)γ

)
(t) ≤ κ for t ≥ t5. Integrating

the inequality z′(t) ≤ (κ/r(t))1/γ , we have

z(t) ≤ z(t5) + κ1/γ
(
Π(t)−Π(t5)

)
.

Since limt→∞Π(t) = ∞, the last inequality becomes

z(t) ≤ κ1/γΠ(t) for t ≥ t5 .
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On the other hand, (5) implies that

f
(
z(σ(ζ))

)
=

f
(
z(σ(ζ))

)
zβ

(
σ(ζ)

) zβ
(
σ(ζ)

)
≥

f
(
κ1/γΠ(σ(ζ))

)(
κ1/γΠ(σ(ζ))

)β zβ(σ(ζ)).
Consequently, (9) becomes

z(t) ≥ Π(t)

2

[ ∫ ∞

t

q(ζ)f
(
κ1/γΠ(σ(ζ))

)
zβ(σ(ζ))(

κ1/γΠ(σ(ζ))
)β dζ

]1/γ
.

If we define

w(t) =

∫ ∞

t

q(ζ)f
(
κ1/γΠ(σ(ζ))

)
zβ(σ(ζ))(

κ1/γΠ(σ(ζ))
)β dζ,

then zβ/
(
κ1/γR

)β ≥ wβ/γ/
(
2κ1/γ

)β
. Taking the derivative of w we have

w′(t) ≤ −
q(t)f

(
κ1/γΠ(σ(t))

)
zβ(σ(t))(

κ1/γΠ(σ(t))
)β

≤ −
q(t)f

(
κ1/γΠ(σ(t))

)(
2κ1/γ

)β wβ/γ(σ(t)) ≤ 0.

Therefore, w(t) is non-increasing on [t5,∞) so wβ/γ(σ(t))/wβ/γ(t) ≥ 1, and

(
w1−β/γ(t)

)′
≤ −(1− β/γ)w−β/γ(t)

q(t)f
(
κ1/γΠ(σ(t))

)(
2κ1/γ

)β wβ/γ
(
σ(t)

)
≤ −(1− β/γ)

q(t)f
(
κ1/γΠ(σ(t))

)(
2κ1/γ

)β .

Since β/γ < 1 and w(t) is positive and nonincresing. Integrating the last
inequality, from t5 to t, we have

(1− β/γ)

(2κ1/γ)β

∫ t

t5
q(η)f

(
κ1/γΠ(σ(η))

)
dη ≤ −

[
w1−β/γ(η)

]t
t5

< w1−β/γ(t5) < ∞ ,

which contradicts (6).
If x(t) < 0 for t ≥ t1, then we set y(t) := −x(t) for t ≥ t1 in (1). Using

(C2), we find (
r(t)(z′(t))γ

)
+ q(t)f (y(σ(t))) = 0 for t ≥ t1,
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where z(t) = y(t)+p(t)y(τ(t)) and f(u) := −f(−u) for u ∈ R. Clearly, f also
satisfies (C2). Then, proceeding as above, we reach the same contradiction.
This proves the oscillation of all unbounded solutions of (1).

Next, we show that (6) is a necessary condition. Suppose that (6) does
not hold; so for some κ > 0 the integral in (6) is finite. Then there exists
T ≥ t0 such that ∫ ∞

T
q(η)f

(
κ1/γΠ(σ(η))

)
dη ≤ κ

3
.

Let us consider the closed subset M of continuous functions

M = {x : x ∈ C([t0,∞),R), x(t) = 0 for t ∈ [t0, T ] and

(
κ

3

)1/γ
[Π(t)−Π(T )] ≤ x(t) ≤ κ1/γ [Π(t)−Π(T )] for t ≥ t0}.

We define the operator Ω : M → C([t0,+∞),R) by

(Ωx)(t) =


0, t ∈ [t0, T ]

− p(t)x
(
τ(t)

)
+

∫ t
T

[
1

r(η)

[
κ
3 +

∫∞
η q(ζ)f

(
x(σ(ζ))

)
dζ

]]1/γ
dη, t ≥ T.

For every x ∈ M and t ≥ T , we have

(Ωx)(t) ≥
∫ t

T

[ 1

r(η)

[κ
3
+

∫ ∞

η
q(ζ)f

(
x(σ(ζ))

)
dζ

]]1/γ
dη

≥
∫ t

T

[ 1

r(η)

κ

3

]1/γ
dη =

(κ
3

)1/γ
[Π(t)−Π(T )].

For every x ∈ M and t ≥ T , we have x(t) ≤ κ1/γΠ(t) and f(x(t)) ≤
f(κ1/γΠ(t)). Then

(Ωx)(t) ≤ −p(t)x
(
τ(t)

)
+

∫ t

T

[ 1

r(η)

(κ
3
+

κ

3

)]1/γ
dη

≤ aκ1/γ
[
Π(τ(t))−Π(T )

]
+(2κ/3)1/γ

[
Π(t)−Π(T )

]
≤ aκ1/γ

[
Π(t)−Π(T )

]
+(2κ/3)1/γ

[
Π(t)−Π(T )

]
=

(
a+ (2/3)1/γ

)
κ1/γ

[
Π(t)−Π(T )

]
≤ κ1/γ

[
Π(t)−Π(T )

]
which implies that (Ωx)(t) ∈ M . Let us define now a sequence of continuous
function vn : [t0,+∞) → R by the recursive formula

v0(t) =

{
0, t ∈ [t0, T ]
κ
3 [Π(t)−Π(T )], t ≥ T.
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vn(t) =
(
Ωvn−1

)
(t), n ≥ 1

Since f is non-decreasing, it is easy to verify that for n > 1,(κ
3

)1/γ[
Π(t)−Π(T )

]
≤ vn−1(t) ≤ vn(t) ≤ κ1/γ

[
Π(t)−Π(T )

]
.

Therefore the point-wise limit of the sequence exists. Let limt→∞ vn(t) =
v(t) for t ≥ t0. By Lebesgue’s dominated convergence theorem, u ∈ M and
(Ωv)(t) = v(t), where v(t) is a solution of (1) on [T,∞) such that v(t) > 0.
Hence, (6) is necessary.

The proof of the theorem is complete. �

Example 1. Consider the delay differential equation

(10)
(
e−t

(
(x(t)− e−tx(t− 1))′

)3/5)′1/3
+ t

(
x(t− 2)

) 1
3 = 0, t ≥ 0 .

Here γ = 3/5, r(t) = e−t, −1 < p(t) = −e−t ≤ 0, τ(t) = t− 1, σ(t) = t− 2,
Π(t) =

∫ t
0 e

5η/3 dη = 3
5

(
e5t/3 − 1

)
, f(v) = v1/3. For β = 1/2, we have

f(v)/vβ = v−1/6 which is a decreasing function. To check (6) we have∫ ∞

0
q(η)f

(
κ1/γΠ(σ(η))

)
dη =

∫ ∞

0
η
(
κ5/3

3

5

(
e5(η−2)/3 − 1

))1/3
dη

= ∞ ∀κ > 0,

since the integral approaches +∞ as η → +∞. So, all the conditions of
Theorem 1 hold, and therefore every unbounded solution of (10) are oscil-
latory.

Theorem 2. Assume that (C1)–(C4) hold. Then every unbounded solu-
tion of (1) oscillates if and only if (6) holds for every κ > 0.

Proof. To prove sufficiency by contradiction, assume that x is an even-
tually positive unbounded solution of (1). Then, there exists t1 ≥ t0 such
that x(t) > 0, x

(
τ(t)

)
> 0 and x

(
σ(t)

)
> 0 for t ≥ t1. Proceeding as in the

proof of Lemma 1, we see that
(
r(z′)γ

)
(t) is non-increasing, z satisfies one

of the cases (i) or (ii) on [t2,∞), where t2 ≥ t1. We have the following two
possible cases.

Case 1. Let z satisfies (i) for t ≥ t2. This case is the same as in the
proof of Theorem 1.

Case 2. Let z satisfies (ii) for t ≥ t2. Since z(t) is unbounded and
monotonically increasing, it follows that

lim
t→∞

zγ(t)

Πγ(t)
= lim

t→∞

(z′(t))γ

(Π′(t))γ
= lim

t→∞

(
r(z′)γ

)
(t) = c < ∞.



On the qualitative behavior of . . . 51

If c = 0, then limt→∞Π(t) = +∞ implies that limt→∞ z(t) < +∞, which
is invalid (∵ z(t) is unbounded). Hence c ̸= 0. Therefore, there exists
a constant κ > 0 and a t2 > t1 such that z(t) ≥ κ1/γΠ(t) for t ≥ t2.
Consequently, x(t) ≥ z(t) ≥ κ1/γΠ(t) for t ≥ t2. Using x(t) ≥ κ1/γΠ(t) in
(1) and then integrating from t2 to +∞, we obtain a contradiction to (6)
for every κ > 0.

The case where x is an eventually unbounded negative solution is very
similar and we omit it here. This proves the oscillation of all unbounded
solutions. The necessary part is same as in Theorem 1.

This completes the proof. �

Theorem 3. Assume that (C1)–(C4) and (5) hold. Then every solution
of (1) oscillates or limt→∞ x(t) = 0 if and only if (6) holds for every κ > 0.

Proof. We show sufficiency by contradiction. Assume that x is an
eventually positive solution of (1). Then, there exists t1 ≥ t0 such that
x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof
of Lemma 1, we see

(
r(z′)γ

)
(t) is non-increasing, and z satisfies one of the

cases (i) or (ii) on [t2,∞), where t2 ≥ t1. Thus, there exist two possible
cases.

Case 1. Let z satisfies (i) for t ≥ t2. Then, by Lemma 2, we have
limt→∞ x(t) = 0.

Case 2. Let z satisfies (ii) for t ≥ t2. The case directly follows from
Theorem 1.

The case where x is a negative solution is similar and we omit it here.
The necessary part is the same as in Theorem 1.
This completes the proof. �

3.2. Non-increasing f(u)/uβ

Let β > γ such that

(11)
f(v)

vβ
≤ f(u)

uβ
, for 0 < v ≤ u .

Theorem 4. Assume that (C1)–(C3), (C5) and (11) hold, σ′(t) ≥ 1,
for t ∈ R+. Then every solution of (1) oscillates or limt→∞ x(t) = 0 if and
only if

(12)

∫ ∞

T

[ 1

r(η)

[ ∫ ∞

η
q(ζ)dζ

]]1/γ
dη = +∞ ∀T > 0.

Proof. To prove sufficiency by contradiction, we use a similar argument
as in the proof of Theorem 3, for the first case when z satisfies (i). Let’s
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consider Case 2, for t ≥ t2. By Remark 2, there exists a constant κ > 0 and
t2 > t1 such that z

(
σ(t)

)
≥ κ for t ≥ t2. Consequently,

(13) f
(
z(σ(t))

)
=

f
(
z(σ(t))

)
zβ

(
σ(t)

) zβ
(
σ(t)

)
≥ f(κ)

κβ
zβ

(
σ(t)

)
for t ≥ t2. Using z(t) ≤ x(x) and (13) in (1), and then integrating the final
inequality we have

lim
A→∞

[(
r(z′γ)′

)
(η)

]A
t
+

f(κ)

κβ

∫ ∞

t
q(η)zβ

(
σ(η)

)
dη ≤ 0 .

Using
(
r(z′γ)′

)
(t) is positive and non-increasing, we have

f(κ)

κβ

∫ ∞

t
q(η)zβ

(
σ(η)

)
dη ≤

(
r(z′)γ

)
(t)

≤
(
r(z′)γ

)
(σ(t)) ≤ r(t)

(
(z′)γ

)
(σ(t))

for all t ≥ t2. Therefore,(f(κ)
κβ

)1/γ[ 1

r(t)

[∫ ∞

t
q(η)zβ

(
σ(η)

)
dη

]]1/γ
≤ z′

(
σ(t)

)
implies that(f(κ)

κβ

)1/γ[ 1

r(t)

[∫ ∞

t
q(η)dη

]]1/γ
≤

z′
(
σ(t)

)
zβ/γ

(
σ(t)

) ≤
z′
(
σ(t)

)
σ′(t)

zβ/γ
(
σ(t)

)
Integrating the last inequality from t2 to +∞, we have(f(κ)

κβ

)1/γ
∫ ∞

t2

[ 1

r(η)

[ ∫ ∞

η
q(ζ)dζ

]]1/γ
dη <

∫ ∞

t2

z′
(
σ(η)

)
σ′(η)

zβ/γ
(
σ(η)

) dη

≤ z1−β/γ(σ(t2))

β/γ − 1
< ∞ ,

which contradicts (12).
The case where x is an eventually negative solution is omitted since it

can be dealt similarly.
Next, we show that (12) is necessary. Assume that (12) does not hold

and let there exists T ≥ t0 such that∫ t

T

[ 1

r(η)

[ ∫ ∞

η
q(ζ)dζ

]]1/γ
dη ≤ 1− a

5
(
f(1)

)1/γ ,
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where κ > 0 is a constant. Let us consider the closed subset M of continuous
functions

M =
{
x ∈ C([t0,∞),R) : x(t) =

1− a

5
, t ∈ [t0, T ];

1− a

5
≤ x(t) ≤ 1 for t ≥ T

}
.

We define the operator Ω : M → C([t0,∞),R) by

(Ωx)(t) =


1−a
5 , t ∈ [t0, T ]

− p(t)x
(
τ(t)

)
+ 1−a

5

+
∫ t
T

[
1

r(η)

[ ∫∞
η q(ζ)f

(
x(σ(ζ))

)
dζ

]]1/γ
dη, t ≥ T.

For every x ∈ M and t ≥ T , (Ωx)(t) ≥ 1−a
5 and

(Ωx)(t) ≤ a+
1− a

5
+

(
f(1)

)1/γ ∫ t

T

[ 1

r(η)

[ ∫ ∞

η
q(ζ)dζ

]]1/γ
dη

≤ a+
1− a

5
+

1− a

5
=

3a+ 2

5
< 1

which implies that Ωx ∈ M . The rest of the proof follows from Theorem 1.
The proof of the theorem is complete. �

Example 2. Consider the delay differential equation

(14)
(((

x(t)− e−tx(τ(t))
)′)1/5)′ 7

3
+ (t+ 1)

(
x(t− 2)

) 7
3 = 0, t ≥ 0 .

Here γ = 1/5, r(t) = 1, σ(t) = t − 2, f(v) = v
7
3 . For β = 4/3, we have

f(v)/vβ = v which is an increasing function. To check (12) we have∫ ∞

2

[ ∫ ∞

η
(ζ + 1)dζ

]5
dη = ∞.

So, all the conditions of Theorem 4 hold, and therefore every solution of
(14) oscillates or limt→∞ x(t) = 0.

4. Comments

It is worth noting that the necessary and sufficient conditions we have
established, hold when −1 < p(t) ≤ 0. These conditions do not hold in
other ranges of p(t). Therefore, the undertaken problem is incomplete for
all range of p(t).

At this point, we will be giving one remarks and two examples to conclude
the paper.
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Remark 3. The results in this paper also hold for equations of the form

(
r(t)

((
x(t) + p(t)x(τ(t))

)′)γ)′
+

m∑
i=1

qi(t)fi
(
x(σi(t))

)
= 0 ,

where p, r, qi, fi, σi (i = 1, 2, . . . ,m) satisfy assumptions (C1)–(C5). In
order to extend Theorems 1–4, there exists an index i such that qi, fi, σi
fulfill (6) and (12).

We conclude the paper by presenting two examples, which show how
Remark 3 can be applied.

Example 3. Consider the delay differential equation(
e−t

((
x(t)− e−tx(τ(t))

)′)3/5)′
+

1

t+ 1
(x(t− 2))1/3(15)

+
1

t+ 2
(x(t− 1))1/5 = 0, t ≥ 0.

Here γ = 3/5, r(t) = e−t, p(t) = −e−t, σ1(t) = t − 2, σ2(t) = t − 1,
Π(t) =

∫ t
0 e

5s/3 ds = 3
5

(
e5t/3 − 1

)
, f1(v) = v1/3 and f2(v) = v1/5. For

β = 1/2, we have f1(v)/v
β = v−1/6 and f2(v)/v

β = v−3/10 which both are
decreasing functions. To check (6) we have∫ ∞

0

m∑
i=1

qi(η)fi
(
κ1/γΠ(σi(η))

)
dη ≥

∫ ∞

0
q1(η)f1

(
κ1/γΠ(σ1(η))

)
dη

=

∫ ∞

0

1

η + 1

(
κ5/3

3

5

(
e5(η−2)/3 − 1

))1/3
dη = ∞ ∀κ > 0,

since the integral approaches +∞ as η → +∞. So, all the conditions of
Theorem 1 hold, and therefore, every unbounded solution of (15) are oscil-
latory.

Example 4. Consider the delay differential equation

(16)
(((

x(t)− e−tx(τ(t))
)′)5/7)′5/3

+ (t+ 1)(x(t− 1))3 = 0, t ≥ 0 .

Here γ = 5/7, r(t) = 1, σ1(t) = t − 2, σ2(t) = t − 1, f1(v) = v5/3 and
f2(v) = v3. For β = 4/3, we have f1(v)/v

β = v1/3 and f2(v)/v
β = v5/3

which both are increasing functions. Clearly, all the conditions of Theorem
4 hold. Thus, all solution of (16) oscillates or limt→∞ x(t) = 0 .
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