PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decreasing and complete monotonicity of functions defined by derivatives of completely monotonic function involving trigamma function

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, using convolution theorem of the Laplace transforms, a monotonicity rule for the ratio of two Laplace transforms, Bernstein’s theorem for completely monotonic functions, and other analytic techniques, the authors verify decreasing property of a ratio between three derivatives of a function involving trigamma function and find the necessary and sufficient conditions for a function defined by three derivatives of a function involving trigamma function to be completely monotonic. These results confirm previous guesses posed by Qi and generalize the corresponding known conclusions.
Wydawca
Rocznik
Strony
art. no. 20240041
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • College of Mathematical Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028043, China
  • College of Mathematical Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028043, China
autor
  • School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo, Henan, 454010, China
  • School of Mathematics and Physics, Hulunbuir University, Hulunbuir, Inner Mongolia, 021008, China
  • ndependent researcher, University Village, Dallas, TX 75252, USA
Bibliografia
  • [1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, vol. 55, 10th printing, Washington, 1972.
  • [2] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993, DOI: https://doi.org/10.1007/978-94-017-1043-5.
  • [3] R. L. Schilling, R. Song, and Z. Vondracccek, Bernstein Functions, 2nd ed., de Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter, Berlin, Germany, 2012, DOI: https://doi.org/10.1515/9783110269338.
  • [4] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.
  • [5] F. Qi, Necessary and sufficient conditions for complete monotonicity and monotonicity of two functions defined by two derivatives of a function involving trigamma function, Appl. Anal. Discrete Math. 15 (2021), no. 2, 378–392, DOI: https://doi.org/10.2298/AADM191111014Q.
  • [6] F. Qi, Necessary and sufficient conditions for a ratio involving trigamma and tetragamma functions to be monotonic, Turkish J. Inequal. 5 (2021), no. 1, 50–59.
  • [7] F. Qi, Some properties of several functions involving polygamma functions and originating from the sectional curvature of the beta manifold, São Paulo J. Math. Sci. 14 (2020), no. 2, 614–630, DOI: https://doi.org/10.1007/s40863-020-00193-1.
  • [8] F. Qi and R. P. Agarwal, Several functions originating from Fisher-Rao geometry of Dirichlet distributions and involving polygamma functions, Mathematics 12 (2024), no. 1, 44, DOI: https://doi.org/10.3390/math12010044.
  • [9] Z.-H. Yang and J.-F. Tian, Monotonicity and inequalities for the gamma function, J. Inequal. Appl. 2017 (2017), no. 1, 317, DOI: https://doi.org/10.1186/s13660-017-1591-9.
  • [10] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition, Elsevier/Academic Press, Amsterdam, 2015, DOI: https://doi.org/10.1016/B978-0-12-384933-5.00013-8.
  • [11] P. S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications, vol. 560, Kluwer Academic Publishers Group, Dordrecht, 2003, DOI: https://doi.org/10.1007/978-94-017-0399-4.
  • [12] F. Qi and D. Lim, Integral representations of bivariate complex geometric mean and their applications, J. Comput. Appl. Math. 330 (2018), 41–58, DOI: https://doi.org/10.1016/j.cam.2017.08.005.
Uwagi
1. Dedicated to Professor Dr. Mourad E. H. Ismail at University of Central Florida.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73c0331e-aabe-479f-927a-ed8f00fec364
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.