PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional Signals and Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The special section in the current volume of the Bulletin of the Polish Academy of Sciences, entitled “Fractional Signals and Systems”, includes selected papers from the FSS17 International Conference, which was held in Łódź, Poland on October 9–11, 2017. The founder of the conference is Manuel Duarte Ortigueira from the New University of Lisbon, Portugal. The FSS17 is yet another in a series of conferences, which had previously taken place in: 1. Caparica, Portugal, 2009 2. Coimbra, Portugal, 2011 3. Ghent, Belgium, 2013 4. Cluj-Napoca, Romania, 2015. The FSS17 conference addressed a broad spectrum of the Fractional Calculus (FC) applications in technical sciences. Main topics included the fractional-order continuous-, and discrete-time linear or non-linear fractional-order control, dynamic system identification via fractional models, fractional order filtering, as well as image processing using fractional methods. The conference’s main organizers included the Institute of Applied Computer Science (Instytut Informatyki Stosowanej Politechniki Łódzkiej), the Lodz University of Technology (Politechnika Łódzka) and the Polish Information Processing Society – Łódź Branch (Polskie Towarzystwo Informatyczne – Oddział Łódzki).
Rocznik
Strony
385--387
Opis fizyczny
Bibliogr. 19 poz., rys., wykr., tab.
Twórcy
  • UNINOVA and DEE of Faculdade de Ciencias e Tecnologia da UNL Campus da FCT da UNL, Quinta da Torre, Caparica 2829 - 516, Portugal
  • Institute of Engineering, Polytechnic of Porto, Dept. of Electrical Engineering, R. Dr. António Bernardino de Almeida, Porto 431, 4249 - 015, Portugal
autor
  • Lodz University of Technology, 18/22 Stefanowskiego St., 00-662 Łódź, Poland
Bibliografia
  • [1] S. Dugowson, Les Diff´erentielles M´etaphysiques, Ph.D. Thesis, Universit´e Paris Nord, Villetaneuse, France, 1994 (in French).
  • [2] J. Liouville, “Memóire sur le calcul des diff´erentielles `a indices quelconques”, Journal de l’´Ecole Polytechnique 13, 71–162 (1832) (in French).
  • [3] J.T. Machado, V. Kiryakova, and F. Mainardi, “Recent history of fractional calculus”, Communications in Nonlinear Science and Numerical Simulation 16(3), 1140–1153 (2011).
  • [4] M. Ortigueira and J. Machado, “Which derivative?”, Fractal and Fractional 1(1), 3 (2017).
  • [5] I. Podlubny, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, 1998.
  • [6] J.A.T. Machado, “Theory of fractional integrals and derivatives: Application to motion control”, ICRAM’95 – IEEE/IFAC/ASME/JSME International Conference on Recent Advances in Mechatronics, pp. 1086–1091, 14-16/Aug/1995, Istanbul, Turkey.
  • [7] N.R.O. Bastos, Fractional Calculus on Time Scales, Ph.D. Thesis, Aveiro University, Portugal, 2012.
  • [8] M.T. Holm, The Theory of Discrete Fractional Calculus: Development and Application, Dissertations, Theses, and Student Research Papers in Mathematics, paper 27, 2011.
  • [9] M.D. Ortigueira, F.V. Coito, and J.J. Trujillo, “Discrete-time differential systems”, Signal Processing 107, 198–217 (2015).
  • [10] C. Goodrich and A.C. Peterson, Discrete Fractional Calculus, Springer, 2015.
  • [11] P. Ostalczyk, Discrete Fractional Calculus, Applications in Control and Image Processing, Series in Computer Vision – Vol. 4, New Jersey London Singapore, World Scientific, 2016.
  • [12] M. Riesz, “L’integral de Riemann-Liouville et le probleme de Cauchy”, Acta Mathematica 81(1), 1–222 (1949).
  • [13] M.D. Ortigueira, “Riesz Potential operators and inverses via fractional centred derivatives”, International Journal of Mathematics and Mathematical Sciences vol. 2006, Article ID 48391, pp. 1–12 (2006).
  • [14] M.D. Ortigueira, “Fractional central differences and derivatives”, Journal of Vibration and Control 14(9–10), 1255–1266 (2008).
  • [15] J.A.T. Machado, “And I say to myself: What a fractional world!”, Fractional Calculus and Applied Analysis 14(11), 635–654 (2011).
  • [16] B.B. Mandelbrot and J.W. Van Ness, “The fractional Brownian motions, fractional noises and applications”, SIAM Review 10(6), 422–437 (1968).
  • [17] M.D. Ortigueira and A.G. Batista, “A fractional linear system view of the fractional Brownian motion”, Nonlinear Dynamics 38, 295–303 (2004).
  • [18] A. Oustaloup, La d´erivation non enti`ere, Herm`es, Paris, 1995.
  • [19] M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czestochowa University of Technology, Częstochowa, Poland, 2009.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73bfc2b6-c44a-41e7-99cc-90f2c8ec61cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.