PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing ligament prestrain in a multibody model of an ankle joint with random sampling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The joints of the lower limb are the key elements in enabling the interaction of the body and the ground during gait [2]. At the same time, the ankle represents one the first links in this load-transferring mechanism. The problems and applications of digital twin modeling, which represent highly accurate and validated models used for treatment and surgical planning, are becoming ever more popular as indicated by recent publications [15], [16]. Nevertheless, these models require modern and advanced tools for validation and efficient exploration of the solution space. This is only even more evidenced by the complex nature of the body joints present in the lower limb.
Słowa kluczowe
Rocznik
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Cracow University of Technology, Cracow, Poland
Bibliografia
  • [1] BORUCKA A., CISZKIEWICZ A., A Planar Model of an Ankle Joint with Optimized Material Parameters and Hertzian Contact Pairs, Materials, 2019 12 (16), 2621, DOI: 10.3390/ma12162621.
  • [2] BROCKETT C.L., CHAPMAN G.J., Biomechanics of the ankle, Orthopaedics and Trauma, 2016, 30 (3), 232–8, DOI: 10.1016/j.mporth.2016.04.015.
  • [3] BUTTON K.D., WEI F., MEYER E.G., HAUT R.C., Specimen-Specific Computational Models of Ankle Sprains Produced in a Laboratory Setting, J Biomech Eng, 2013, 135 (4), 041001, DOI: 10.1115/1.4023521.
  • [4] CISZKIEWICZ A., Analyzing Uncertainty of an Ankle Joint Model with Genetic Algorithm, Materials, 2020, 13 (5), 1175, DOI: 10.3390/ma13051175.
  • [5] CISZKIEWICZ A., Arbitrary Prestrain Values for Ligaments Cause Numerical Issues in a Multibody Model of an Ankle Joint, Symmetry, 2022, 14 (2), 261, DOI: 10.3390/sym14020261.
  • [6] FORLANI M., SANCISI N., PARENTI-CASTELLI V., A Three-Dimensional Ankle Kinetostatic Model to Simulate Loaded and Unloaded Joint Motion, J Biomech Eng, 2015, 137 (6), 061005, DOI: 10.1115/1.4029978.
  • [7] FUNK J.R., HALL G.W., CRANDALL J.R., PILKEY W.D., Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments, J Biomech Eng, 2000, 122 (1), 15–22.
  • [8] IAQUINTO J.M., WAYNE J.S., Computational Model of the Lower Leg and Foot/Ankle Complex: Application to Arch Stability, J Biomech Eng, 2010, 132 (2), 021009, DOI: 10.1115/1.4000939.
  • [9] KLEKIEL T., BĘDZIŃSKI R., Finite Element Analysis Of Large Deformation Of Articular Cartilage In Upper Ankle Joint Of Occupant In Military Vehicles During Explosion, Arch Metall Mater, 2015, 60 (3), 2115–21, DOI: 10.1515/amm-2015-0356.
  • [10] LIACOURAS P.C., WAYNE J.S., Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies, J Biomech Eng, 2007, 129 (6), 811–7, DOI: 10.1115/1.2800763.
  • [11] MAAS S.A., ERDEMIR A., HALLORAN J.P., WEISS J.A., A general framework for application of prestrain to computational models of biological materials, J Mech Behav Biomed, 2016, 61, 499–510, DOI: 10.1016/j.jmbbm.2016.04.012.
  • [12] MACHADO M., FLORES P., CLARO J.C.P., AMBRÓSIO J., SILVA M., COMPLETO A., LANKARANI H.M., Development of a planar multibody model of the human knee joint, Nonlinear Dyn, 2010, 60 (3), 459–78, DOI: 10.1007/s11071-009-9608-7.
  • [13] OZEKI S., YASUDA K., KANEDA K., YAMAKOSHI K., YAMANOI T., Simultaneous Strain Measurement With Determination of a Zero Strain Reference for the Medial and Lateral Ligaments of the Ankle, Foot Ankle Int, 2002, 23(9), 825–32, DOI: 10.1177/107110070202300909.
  • [14] RODRIGUES DA SILVA M., MARQUES F., TAVARES DA SILVA M., FLORES P., A new skeletal model for the ankle joint complex, Multibody Syst Dyn, 2024 60 (1), 27–63, DOI: 10.1007/s11044-023-09955-z.
  • [15] ROUPA I., DA SILVA M.R., MARQUES F., GONÇALVES S.B., FLORES P., DA SILVA M.T., On the Modeling of Biomechanical Systems for Human Movement Analysis: A Narrative Review, Arch Computat Methods Eng, 2022, 29 (7), 4915–58, DOI: 10.1007/s11831- 022-09757-0.
  • [16] SILVA M., FREITAS B., ANDRADE R., CARVALHO Ó., RENJEWSKI D., FLORES P., ESPREGUEIRA-MENDES J., Current Perspectives on the Biomechanical Modelling of the Human Lower Limb: A Systematic Review, Arch Computat Methods Eng, 2021, 28 (2), 601–36, DOI: 10.1007/s11831-019-09393-1.
  • [17] SYBILSKI K., MAZURKIEWICZ Ł., JURKOJĆ J., MICHNIK R., MAŁACHOWSKI J., Evaluation of the effect of muscle forces implementation on the behavior of a dummy during a headon collision, Acta Bioeng Biomech, 2021, 23 (4), 137–147 DOI: 10.37190/ABB-01976- 2021-04.
  • [18] TAKABAYASHI T., EDAMA M., INAI T., TOKUNAGA Y., KUBO M., Influence of sex and knee joint rotation on patellofemoral joint stress, Acta Bioeng Biomech, 2022, 24 (3), 161–8, DOI: 10.37190/ABB-02115-2022-03.
  • [19] TAKABAYASHI T., MUTSUAKI E., TAKUMA I., MASAYOSHI K., Effect of change in patellofemoral joint contact area by the decrease in vastus medialis muscle activation on joint stress, Acta Bioeng Biomech, 2023, 25 (2), 41–47, DOI: 10.37190/ABB-02234- 2023-02.
  • [20] VAN DER WALT S., COLBERT S.C., VAROQUAUX G., The NumPy Array: A Structure for Efficient Numerical Computation, Comput Sci Eng, 2011, 13 (2), 22–30, DOI: 10.1109/MCSE.2011.37.
  • [21] WATANABE R., MISHIMA H., TAKEHASHI H., WADA H., TOTSUKA S., NISHINO T., YAMAZAKI M., HYODO K., Stress analysis of total hip arthroplasty with a fully hydroxyapatite-coated stem: comparing thermoelastic stress analysis and CT-based finite element analysis, Acta Bioeng Biomech, 2022, 24 (2), 47–54, DOI: 10.37190/ABB-01994-2021-01.
  • [22] WEI F., BRAMAN J.E., WEAVER B.T., HAUT R.C., Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data, Journal of Biomechanics, 2011, 44 (15), 2636–41, DOI: 10.1016/j.jbiomech.2011.08.010.
  • [23] WEI F., HUNLEY S.C., POWELL J.W., HAUT R.C., Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury due to External Rotation, Ann Biomed Eng, 2011, 39 (2), 756–65, DOI: 10.1007/s10439-010- 0234-9.
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73bed0d1-13c0-40e7-af10-37a6907ca3b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.