Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we investigate groups which admit the existence of weighted consistent approximations for pairwise comparisons matrices. These approximations are defined by extending the classical matrix projection for R_{+} to abstract weighted projections on the non-linear sets of transitive group-valued matrices. It is of interest that all of them are represented by general explicit formulae dependent on an abstract logarithmic function. This general approach is applied to the groups Z^{∗}_{p} and F^{∗}_{2m} which are of fundamental importance in in cryptography. Finally, we use our unified mathematical model of pairwise comparisons for continuous one-parameter unitary groups, which play a fundamental role in physics.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
243--255
Opis fizyczny
Bibligr. 21 poz., tab.
Twórcy
autor
- Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Information Technology, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- School of Physics, Mathematics and Computing, The University of Western Australia, 35 Stirling Highway, Crawley, W.A. 6009 Perth, Australia
Bibliografia
- [1] Saaty TL. The Analytic Hierarchy Process. New York: McGraw Hill; 1980.
- [2] Saaty TL. A scaling method for priorities in hierarchical structure. Journal of Mathematical Psychology. 1997;15:234–281.
- [3] van Laarhoven PJM, Pedrycz W. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems. 2018;11:229–241.
- [4] Koczkodaj WW, Orlowski M. An orthogonal basis for computing a consistent approximation to a pairwise comparisons matrix. Computers and Mathematics with Applications. 1997;34:41–47.
- [5] Cavallo B, Brunelli M. A general unified framework for interval pairwise comparisons matrices. International Journal of Approximate Reasoning. 178–198;93:2018.
- [6] Farkas A, Lancaster P, Rozsa P. Approximation of positive matrices by transitive matrices. Computers and Mathematics with Applications. 2005;50:1033–1039.
- [7] Koczkodaj WW, Szarek SJ. On distance-based consistency reduction algorithms for pairwise comparisons. Logic Journal of the IGPL. 2010;18:859–869.
- [8] Holsztynski W, Koczkodaj WW. Convergence of inconsistency algorithms for the pairwise comparisons. Information Processing Letters. 1996;59:197–202.
- [9] Koczkodaj WW, Szwarc R. On axiomatization of inconsistency indicators for pairwise comparisons. Fundamenta Informaticae. 2014;132:485–500.
- [10] Koczkodaj WW, Smarzewski R, Szybowski J. On orthogonal projections on the space of consistent pairwise comparisons matrices. Fundamenta Informaticae. 2020;172:379–397.
- [11] Smarzewski R, Rutka P. Consistent projections and indicators in pairwise comparisons. International Journal of Approximate Reasoning. 2020;124:123–132.
- [12] Kendall MG, Babington-Smith B. On the method of paired comparisons. Biometrika. 1940;31:324–345.
- [13] Wajch E. From pairwise comparisons to consistency with respect to a group operation and Koczkodaj’s metric. International Journal of Approximate Reasoning. 2019;106:51–62.
- [14] Koczkodaj WW, Liu F, Marek VW, Mazurek J, Mazurek M, Mikhailov L, et al. On the use of group theory to generalize elements of pairwise comparisons matrix: a cautionary note. International Journal of Approximate Reasoning. 2020;124:59–65.
- [15] Durnoga K, Pomykala J. Large sieve, Miller-Rabin compositeness witnesses and integer factoring problem. Fundamenta Informaticae. 2017;156:179–185.
- [16] Durnoga K, Zralek B. On computing discrete logarithms and bulk and randomness extractors. Fundamenta Informaticae. 2015;141:345–366.
- [17] Conway JB. A Course in Functional Analysis. Berlin: Springer; 1990.
- [18] Aho AV, Hopcroft JE, Ullman JD. The Design and Analysis of Computer Algorithms. London: Addison-Wesley; 1974.
- [19] Menezes AJ, van Oorschot PC, Vanstone SA. Handbook of Applied Cryptography. New York: CRC; 1997.
- [20] Husemöller D. Elliptic Curves. New York: Springer-Verlag; 2004.
- [21] Washington LC. Elliptic Curves Number Theory and Cryptography. New York: CRC; 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73bebaec-1555-49fd-bd7c-86e2201bdf29