PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MnCo2O4 deposited by spray pyrolysis as a protective layer for stainless steel interconnects

Identyfikatory
Warianty tytułu
PL
MnCo2O4 nanoszone za pomocą pirolizy aerozolowej na stalowe interkonektory jako warstwa ochronna
Języki publikacji
EN
Abstrakty
EN
Stainless steel interconnects working in Solid Oxide Fuel Cells stacks are exposed to high temperature resulting in their corrosion. Protective layers for the hydrogen and oxygen sides are necessary to protect the interconnect material, prolongate the stack lifetime and maintain the output power. In this paper MnCo2O4 protective layer for the oxygen side of the interconnect is deposited by spray pyrolysis and is examined.
PL
Interkonektory ze stali nierdzewnej pracujące w stosach tlenkowych ogniw paliwowych ulegają wysokotemperaturowej korozji. Warstwy ochronne są niezbędne do zabezpieczenia materiału interkonektora, wydłużenia czasu pracy stosu i utrzymania mocy wyjściowej na pożądanym poziomie. W tym artykule warstwa ochronna MnCo2O4 dla strony tlenowej interkonektora jest badana i jej zastosowanie jest rozważane.
Twórcy
  • Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdańsk, ul. Narutowicza 11/12, Poland
autor
  • Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
autor
  • Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdańsk, ul. Narutowicza 11/12, Poland
Bibliografia
  • [1] M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe i P. V. Hendriksen, „Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects,” Corrosion Science, nr 52, pp. 3309-3320, 2010.
  • [2] W. Z. Zhu i S. C. Deevi, „Development of interconnect materials for solid oxide fuel cells,” Materials Science and Engineering, nr A 348, pp. 227-243, 2003.
  • [3] P. Piccardo, R. Amendola, S. Fontana, S. Chevalier, G. Caboches i P. Gannon, „Interconnect materials for next-generation solid oxide fuel cells,” Journal of Applied Electrochemistry, nr 39, pp. 545-551, 2009.
  • [4] A. M. Dayaghi, M. Askari, H. Rashtchi i P. Gannon, „Fabrication and high-temperature corrosion of sol–gel Mn/Co oxide spinel coating on AISI 430,” Surface & Coatings Technology Journal, nr 223, pp. 110-114, 2013
  • [5] S. J. Han, Z. Pala i S. Sampath, „Plasma sprayed manganese–cobalt spinel coatings: Process sensitivity on phase, electrical and protective performance,” Journal of Power Sources, nr 304, pp. 234-243, 2016.
  • [6] J. W. Fergus, „Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells,” International Journal of Hydrogen Energy, nr 32, pp. 3664-3671, 2007.
  • [7] J. Puranen, J. Lagerbom, L. Hyvärinen, T. Mäntylä, E. Levänen, M. Kylmälahti i P. Vuoristo, „Formation and structure of plasma sprayed manganese-cobalt spinel coatings on preheated metallic interconnect plates,” Surface & Coatings Technology, nr 205, pp. 1029-1033, 2010.
  • [8] J. Puranen, J. Laakso, M. Honkanen, S. Heinonen, M. Kylmälahti, S. Lugowski, T. W. Coyle, O. Kesler i P. Vuoristo, „High temperature oxidation tests for the high velocity solution precursor flame sprayed manganeseecobalt oxide spinel protective coatings on SOFC interconnect steel,” International Journal of Hydrogen Energy, nr 40, pp. 6216-6227, 2015.
  • [9] Z. Żurek, T. Brylewski, A. Jaroń i E. Chmura, „Area specific resistance of the scale formed on Crofer 22APU ferritic steel in atmospheres containing SO2,” Solid State Ionics, nr 234, pp. 33-39, 2013.
  • [10] T. Brywewski, M. Nanko, M. Maruyama, T. Maruyama i K. Przybylski, „Application of Fe–16Cr ferritic alloy to interconnect for a solid oxide fuel cell,” Solid State Ionics, nr 143, pp. 131-150, 2001.
  • [11] J. W. Fergus, „Metallic interconnects for solid oxide fuel cells,” Materials Science and Engineering A, nr 397, pp. 271-283, 2005.
  • [12] G. Chen, X. Xin, T. Luo, L. Liu, Y. Zhou, C. Yuan, C. Lin, Z. Zhan i S. Wang, „Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications,” Journal of Power Sources, nr 278, pp. 230-234, 2015.
  • [13] D. Szymczewska, S. Molin, M. Chen, P. V. Hendriksen i P. Jasiński, „Ceria based protective coatings for steel interconnects prepared by spray pyrolysis,” Procedia Engineering, nr 98, pp. 93-100, 2014.
  • [14] N. Orlovskaya, A. Coratolo, C. Johnson i R. Gemmen, „Structural Characterization of Lanthanum Chromite Perovskite Coating Deposited by Magnetron Sputtering on an Iron-Based Chromium-Containing Alloy as a Promising Interconnect Material for SOFCs,” Journal of the American Ceramic Society, nr 87, pp. 1981-1987, 2004.
  • [15] C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J. F. Coudert i P. Fauchais, „Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes,” Surface & Coatings Technology, nr 200, pp. 3743-3756, 2006.
  • [16] X. Xin, S. Wang, Q. Zhu, Y. Xu i T. Wen, „A high performance nano-structure conductive coating on a Crofer22APU alloy fabricated by a novel spinel powder reduction coating technique,” Electrochemistry Communications, nr 12, pp. 40-43, 2010.
  • [17] X. Xin, S. Wang, J. Qian, C. Lin i Z. Zhan, „Development of the spinel powder reduction technique for solid oxide fuel cell interconnect coating,” International Journal of Hydrogen Energy, nr 37, pp. 471-476, 2012.
  • [18] N. Shaigan, W. Qu, D. G. Ivey i W. Chen, „A review of recent progress in coatings, surface modifications and alloy,” Journal of Power Sources, nr 195, pp. 1529-1542, 2010.
  • [19] S. Molin, M. Chen i P. V. Hendriksen, „Oxidation study of coated Crofer 22 APU steel in dry oxygen,” Journal of Power Sources, nr 251, pp. 488-495, 2014.
  • [20] M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen i R. Knibbe, „Efficient dual layer interconnect coating for high temperature electrochemical devices,” International Journal of hydrogen energy, nr 37, pp. 14501-145010, 2012.
  • [21] N. J. Magdefrau, L. Chen, E. Y. Sun i M. Aindow, „The effect ofMn1.5Co1.5O4 coatings on the development of near surface microstructure for Haynes 230 oxidized at 800 °C in air,” Surface & Coatings Technology, nr 242, pp. 109-117, 2014.
  • [22] J. H. Zhu, M. J. Lewis, S. W. Du i Y. T. Li, „CeO2-doped (Co,Mn)3O4 coatings for protecting solid oxide fuel cell interconnect alloys,” Thin Solid Films, nr 596, pp. 179-184, 2015.
  • [23] D. Szymczewska, S. Molin, V. Venkatachalam, M. Chen, P. Jasiński i P. V. Hendriksen, „Assesment of (Mn,Co)3O4 powders for possible coating material for SOFC/SOEC interconnects,” IOP Conf. Series: Materials Science and Engineering, nr 104, p. 012017, 2015.
  • [24] H. H. Zhang i C. L. Zeng, „Preparation and performances of CoeMn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application,” Journal of Power Sources journal, nr 252, pp. 122-129, 2014.
  • [25] A. Kruk, M. Stygar i T. Brylewski, „Mn–Co spinel protective–conductive coating on AL453 ferritic stainless steel for IT-SOFC interconnect applications,” Journal of Solid State Electrochemistry, nr 17, pp. 993-1003, 2013.
  • [26] Z. Y. Tian, N. Bahlawane, V. Vannier i K. K. Kohse-Höinghaus, „Structure sensitivity of propene oxidation over Co-Mn spinels,” Proceedings of the Combustion Institute, nr 34, pp. 2261-2268, 2013.
  • [27] H. Zhang, J. Wu, X. Liu i A. Baker, „Studies on elements diffusion of Mn/Co coated ferritic stainless steel for solid oxide fuel cell interconnects application,” International Journal of Hydrogen Energy, nr 38, pp. 5075-5083, 2013.
  • [28] J. Puranen, M. Pihlatie, J. Lagerbom, G. Bolelli, J. Laakso, L. Hyvärinen, M. Kylmälahti, O. Himanen, J. Kiviaho, L. Lusvarghi i P. Vuoristo, „Post-mortem evaluation of oxidized atmospheric plasma sprayed MneCoeFe oxide spinel coatings on SOFC interconnects,” International Journal of Hydrogen Energy, nr 39, pp. 17284-17294, 2014.
  • [29] J. Puranen, M. Pihlatie, J. Lagerbom, T. Salminen, J. Laakso, L. Hyvärinen, M. Kylmälahti, O. Himanen, J. Kiviaho i P. Vuoristo, „Influence of powder composition and manufacturing method on electrical and chromium barrier properties of atmospheric plasma sprayed spinel coatings prepared from MnCo2O4 and,” International Journal of Hydrogen Energy, nr 39, pp. 17246-17257, 2014.
  • [30] Y. Z. Hu, C. X. Li, G. J. Yang i C. J. Li, „Evolution of microstructure during annealing of Mn1.5Co1.5O4 spinel coatings deposited by atmospheric plasma spray,” International Journal of Hydrogen Energy, nr 39, pp. 13844-13851, 2014.
  • [31] B. K. Park, J. W. Lee, S. B. Lee, T. H. Lim, S. J. Park, C. O. Park i R. H. Song, „Cu- and Nidoped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells,” International Journal of Hydrogen Energy, nr 38, pp. 12043-12050, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73bd6c91-42ad-4bd8-aaa6-d2c858a17dd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.