Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the reinforcement of rigid polyurethane foams with microcrystalline cellulose to improve their mechanical and thermal properties. In this work, microcrystalline cellulose was added to polyol and was dispersed using two methods: calendering and ultrasounds. As a result of the study, it was found that the addition of micro cellulose to the polyol mixture used for the synthesis of polyurethane foam changes the properties of the final product. A crucial aspect is how it is added to the mixture. When adding microcrystalline cellulose particles, better results were obtained for particles dispersed using ultrasound. The most beneficial changes were obtained for the sample with 2php cellulose. The most significant reduction in average pore size was shown, which has a beneficial effect on the insulating properties of polyurethane foam. In addition, an increase in mechanical properties was also noted. Both properties are highly desirable in many applications.
Wydawca
Czasopismo
Rocznik
Strony
5--27
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
Bibliografia
- 1. Duc, H.M.; Huu, D.N.; Huu, T.T.; Trong, L. Le; Nhu, H.L.; Ngoc, H.P.; Van, T.N.; Kieu Thi, Q.H.; Vu, G.N. The Effect of Multiwalled Carbon Nanotubes on the Thermal Conductivity and Cellular Size of Polyurethane Foam. Adv. Polym. Technol. 2021, 2021, doi:10.1155/2021/6634545.
- 2. Dhaliwal, G.S.; Bajwa, D.S.; Bajwa, S. Fabrication and Testing of Soy-Based Polyurethane Foam with Flame Retardant Properties. J. Polym. Environ. 2021, 29, 1153–1161, doi:10.1007/s10924-020-01930-5.
- 3. Strąkowska, A.; Członka, S.; Kairytė, A.; Strzelec, K. Effects of Physical and Chemical Modification of Sunflower Cake on Polyurethane Composite Foam Properties. Materials (Basel). 2021, 14, 1–13, doi:10.3390/ma14061414.
- 4. Paciorek-Sadowska, J.; Borowicz, M.; Isbrandt, M.; Czupryński, B.; Apiecionek, Ł. The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites. Polymers (Basel). 2019, 11, 1–21, doi:10.3390/polym11091431.
- 5. Stanzione, M.; Oliviero, M.; Cocca, M.; Errico, M.E.; Gentile, G.; Avella, M.; Lavorgna, M.; Buonocore, G.G.; Verdolotti, L. Tuning of Polyurethane Foam Mechanical and Thermal Properties Using Ball-Milled Cellulose. Carbohydr. Polym. 2020, 231, 115772, doi:10.1016/j.carbpol.2019.115772.
- 6. Septevani, A.A.; Evans, D.A.C.; Martin, D.J.; Annamalai, P.K. Hybrid Polyether-Palm Oil Polyester Polyol Based Rigid Polyurethane Foam Reinforced with Cellulose Nanocrystal. Ind. Crops Prod. 2018, 112, 378–388, doi:10.1016/j.indcrop.2017.12.032.
- 7. Członka, S.; Strąkowska, A.; Kairytė, A.; Kremensas, A. Nutmeg Filler as a Natural Compound for the Production of Polyurethane Composite Foams with Antibacterial and Anti-Aging Properties. Polym. Test. 2020, 86, doi:10.1016/j.polymertesting.2020.106479.
- 8. Członka, S.; Bertino, M.F.; Strzelec, K. Rigid Polyurethane Foams Reinforced with Industrial Potato Protein. Polym. Test. 2018, 68, 135–145, doi:10.1016/j.polymertesting.2018.04.006.
- 9. Prociak, A.; Kurañska, M.; Malewska, E.; Szczepkowski, L.; Zieleniewska, M.; Ryszkowska, J.; Ficon, J.; Rzasa, A. Biobased Polyurethane Foams Modified with Natural Fillers. Polimery 2015, 60, 592–599, doi:10.14314/polimery.2015.592.
- 10. Chang, L.C.; Sain, M.; Kortschot, M. Effect of Mixing Conditions on the Morphology and Performance of Fiber-Reinforced Polyurethane Foam. J. Cell. Plast. 2015, 51, 103–119, doi:10.1177/0021955X14545138.
- 11. Uram, K.; Leszczyńska, M.; Prociak, A.; Czajka, A.; Gloc, M.; Leszczyński, M.K.; Michałowski, S.; Ryszkowska, J. Polyurethane Composite Foams Synthesized Using Bio‐polyols and Cellulose Filler. Materials (Basel). 2021, 14, doi:10.3390/ma14133474.
- 12. Shojaeiarani, J.; Bajwa, D.; Holt, G. Sonication Amplitude and Processing Time Influence the Cellulose Nanocrystals Morphology and Dispersion. Nanocomposites 2020, 6, 41–46, doi:10.1080/20550324.2019.1710974.
- 13. Ryszkowska, J. Applications of Quantitative Image Analysis to the Description of the Morphology of Boehmite and Their Polyurethane Nanocomposites. Mater. Sci. Forum 2006, 514–516, 1658–1662, doi:10.4028/www.scientific.net/msf.514-516.1658.
- 14. Ryszkowska, J.; Zawadzak, E. Selection of Nanofiller Dispersion Method and Properties Evaluation of Polyurethane/ZrO2:Eu Composites for Optoelectronic Applications. Mater. Sci. Forum 2008, 587–588, 448–452, doi:10.4028/www.scientific.net/msf.587-588.448.
- 15. Ryszkowska, J.; Jurczyk-Kowalska, M.; Szymborski, T.; Kurzydłowski, K.J. Dispersion of Carbon Nanotubes in Polyurethane Matrix. Phys. E Low-Dimensional Syst. Nanostructures 2007, 39, 124–127, doi:10.1016/j.physe.2007.02.003.
- 16. Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kowalski, M.; Krauze, S.; Lewandowska, M. The Influence of Carbon Fillers on the Thermal Properties of Polyurethane Foam. J. Therm. Anal. Calorim. 2016, 123, 283–291, doi:10.1007/s10973-015-4940-2.
- 17. Łojewska, J.; Miśkowiec, P.; Łojewski, T.; Proniewicz, L.M. Cellulose Oxidative and Hydrolytic Degradation: In Situ FTIR Approach. Polym. Degrad. Stab. 2005, 88, 512–520, doi:10.1016/j.polymdegradstab.2004.12.012.
- 18. Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. Evaluation of Morphological and Chemical Aspects of Different Wood Species by Spectroscopy and Thermal Methods. J. Mol. Struct. 2011, 988, 65–72, doi:10.1016/j.molstruc.2010.12.004.
- 19. Morán, J.I.; Alvarez, V.A.; Cyras, V.P.; Vázquez, A. Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers. Cellulose 2008, 15, 149–159, doi:10.1007/s10570-007-9145-9.
- 20. Poletto, M.; Pistor, V.; Zeni, M.; Zattera, A.J. Crystalline Properties and Decomposition Kinetics of Cellulose Fibers in Wood Pulp Obtained by Two Pulping Processes. Polym. Degrad. Stab. 2011, 96, 679–685, doi:10.1016/j.polymdegradstab.2010.12.007.
- 21. Stenstad, P.; Andresen, M.; Tanem, B.S.; Stenius, P. Chemical Surface Modifications of Microfibrillated Cellulose. Cellulose 2008, 15, 35–45, doi:10.1007/s10570-007-9143-y.
- 22. Oh, S.Y.; Yoo, D. Il; Shin, Y.; Seo, G. FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydr. Res. 2005, 340, 417–428, doi:10.1016/j.carres.2004.11.027.
- 23. Ibrahim, M.; Osman, O.; Mahmoud, A.A. Spectroscopic Analyses of Cellulose and Chitosan: FTIR and Modeling Approach. J. Comput. Theor. Nanosci. 2011, 8, 117–123, doi:10.1166/jctn.2011.1668.
- 24. Cichosz, S.; Masek, A. Cellulose Fibers Hydrophobization via a Hybrid Chemical Modification. Polymers (Basel). 2019, 11, doi:10.3390/polym11071174.
- 25. Colom, X.; Carrasco, F.; Pagès, P.; Canavate, J. Effects of Different Treatments on the Interface of HDPE/Lignocellulosic Fiber Composites. Compos. Sci. Technol. 2003, 63, 161–169, doi:10.1016/S0266-3538(02)00248-8.
- 26. Patel, H.A.; Somani, R.S.; Bajaj, H.C.; Jasra, R. V. Preparation and Characterization of Phosphonium Montmorillonite with Enhanced Thermal Stability. Appl. Clay Sci. 2007, 35, 194–200, doi:10.1016/j.clay.2006.09.012.
- 27. Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. Structural Analysis of Photodegraded Wood by Means of FTIR Spectroscopy. Polym. Degrad. Stab. 2003, 80, 543–549, doi:10.1016/S0141-3910(03)00051-X.
- 28. Salmén, L.; Bergström, E. Cellulose Structural Arrangement in Relation to Spectral Changes in Tensile Loading FTIR. Cellulose 2009, 16, 975–982, doi:10.1007/s10570-009-9331-z.
- 29. Ołdak, D.; Kaczmarek, H.; Buffeteau, T.; Sourisseau, C. Photo- and Bio-Degradation Processes in Polyethylene, Cellulose and Their Blends Studied by ATR-FTIR and Raman Spectroscopies. J. Mater. Sci. 2005, 40, 4189–4198, doi:10.1007/s10853-005-2821-y.
- 30. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788, doi:10.1016/j.fuel.2006.12.013.
- 31. Ma, S.; Yu, S.J.; Wang, Z.H.; Zheng, X.L. Ultrasound-Assisted Modification of Beet Pulp Cellulose with Phthalic Anhydride in Ionic Liquid. Cellul. Chem. Technol. 2013, 47, 527–533.
- 32. Li, Y.; Xiao, H.; Chen, M.; Song, Z.; Zhao, Y. Absorbents Based on Maleic Anhydride-Modified Cellulose Fibers/Diatomite for Dye Removal. J. Mater. Sci. 2014, 49, 6696–6704, doi:10.1007/s10853-014-8270-8.
- 33. Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Gloc, M.; Kulesza, M.; Kowalski, M.; Krauze, S.; Lewandowska, M. Flammability, Mechanical Properties and Structure of Rigid Polyurethane Foams with Different Types of Carbon Reinforcing Materials. Compos. Struct. 2016, 140, 67–76, doi:10.1016/j.compstruct.2015.12.022.
- 34. Bartczak, P.; Siwi´nskasiwi´nska-Ciesielczyk, K.; Haak, N.; Parus, A.; Piasecki, A.; Jesionowski, T.; Borysiak, S. Closed-Cell Polyurethane Spray Foam Obtained with Novel TiO 2-ZnO Hybrid Fillers-Mechanical, Insulating Properties and Microbial Purity. J. Build. Eng. 2023, 65, 105760, doi:10.1016/j.jobe.2022.105760.
- 35. Silva, M.C.; Takahashi, J.A.; Chaussy, D.; Belgacem, M.N.; Silva, G.G. Composites of Rigid Polyurethane Foam and Cellulose Fiber Residue. Wiley Intersci. 2010, doi:10.1002/app.
- 36. Ryszkowska, J.L.; Auguścik, M.; Sheikh, A.; Boccaccini, A.R. Biodegradable Polyurethane Composite Scaffolds Containing Bioglass® for Bone Tissue Engineering. Compos. Sci. Technol. 2010, 70, 1894–1908, doi:10.1016/j.compscitech.2010.05.011.
- 37. Tien, Y.I.; Wei, K.H. Hydrogen Bonding and Mechanical Properties in Segmented Montmorillonite/Polyurethane Nanocomposites of Different Hard Segment Ratios. Polymer (Guildf). 2001, 42, 3213–3221, doi:10.1016/S0032-3861(00)00729-1.
- 38. Pretsch, T.; Jakob, I.; Müller, W. Hydrolytic Degradation and Functional Stability of a Segmented Shape Memory Poly(Ester Urethane). Polym. Degrad. Stab. 2009, 94, 61–73, doi:10.1016/j.polymdegradstab.2008.10.012.
- 39. Ryszkowska, J. Supermolecular Structure, Morphology and Physical Properties of Urea-Urethane Elastomers. Polimery/Polymers 2012, 57, 777–785, doi:10.14314/polimery.2012.777.
- 40. Mazurek, M.M.; Tomczyk, K.; Auguścik, M.; Ryszkowska, J.; Rokicki, G. Influence of the Soft Segment Length on the Properties of Water-Cured Poly(Carbonate-Urethane-Urea)S. Polym. Adv. Technol. 2015, 26, 57–67, doi:10.1002/pat.3419.
- 41. Szycher, M. Szycher’s Handbook of Polyurethanes; 2nd ed.; CRC Press, 2012; Vol. 142; ISBN 9781138075733.
- 42. Leszczyńska, M.; Ryszkowska, J.; Szczepkowski, L.; Kurańska, M.; Prociak, A.; Leszczyński, M.K.; Gloc, M.; Antos-Bielska, M.; Mizera, K. Cooperative Effect of Rapeseed Oil-Based Polyol and Egg Shells on the Structure and Properties of Rigid Polyurethane Foams. Polym. Test. 2020, 90, 106696, doi:10.1016/j.polymertesting 2020.106696.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73b78e13-f435-445a-8d87-5632d067885b