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OSCILLATION CRITERIA
FOR THIRD ORDER

NONLINEAR DELAY DIFFERENTIAL EQUATIONS
WITH DAMPING

Said R. Grace

Communicated by P.A. Cojuhari

Abstract. This note is concerned with the oscillation of third order nonlinear delay differ-
ential equations of the form

(
r2(t)

(
r1(t)y

′(t)
)′)′

+ p(t)y′(t) + q(t)f(y(g(t))) = 0. (∗)

In the papers [A.Tiryaki, M.F. Aktas, Oscillation criteria of a certain class of third or-
der nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007),
54–68] and [M.F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear
functional differential equations, Applied Math. Letters 23 (2010), 756–762], the authors es-
tablished some sufficient conditions which insure that any solution of equation (∗) oscillates
or converges to zero, provided that the second order equation

(
r2(t)z

′(t)
)′
+ (p(t)/r1(t)) z(t) = 0 (∗∗)

is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned
papers and present some new sufficient conditions which insure that any solution of equation
(∗) oscillates if equation (∗∗) is nonoscillatory. We also establish results for the oscillation of
equation (∗) when equation (∗∗) is oscillatory.
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1. INTRODUCTION

In this note, we consider a nonlinear third order functional differential equations of
the form (

r2(t) (r1(t)y
′(t))

′
)′

+ p(t)y′(t) + q(t)f(y(g(t))) = 0, (1.1)
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where q ∈ C(I,R), r2, p ∈ C(I,R), r1 ∈ C2(I,R), I = [t0,∞) ⊂ R, t0 ≥ 0, r1(t) > 0,
r2(t) > 0, p(t) ≥ 0, q(t) > 0, g ∈ C1(I,R) satisfies 0 < g(t) ≤ t, g′(t) ≥ 0 and
g(t)→∞ as t→∞ and f ∈ C(R,R) satisfies f(u)/u ≥ K > 0 for u 6= 0.

A function y(t) is called the solution of equation (1.1) if y(t) ∈ C[ty,∞),
r1(t)y

′(t) ∈ C1[ty,∞) and r2(t) (r1(t)y
′(t))′ ∈ C1[ty,∞) and y(t) satisfies equation

(1.1) on [ty,∞) for every t ≥ ty ≥ t0.
We restrict our attention to those solutions of equation (1.1) which exist on I and

satisfy the condition sup {|y(t)| : t1 ≤ t <∞} > 0 for t1 ∈ [t0,∞). Such a solution is
called oscillatory if it has arbitrarily large zeros, otherwise it is called nonoscillatory.
Equation (1.1) is said to be oscillatory if all of its solutions are oscillatory.

Determining oscillation criteria for particular second order differential equations
has received a great deal of attention in the last few years. Compared to second order
differential equations, the study of oscillation and asymptotic behavior of third order
differential equations has received considerably less attention in the literature. In the
ordinary case for some recent results on third order equations the reader can refer to
Cecchi and Marini [3, 4], Parhi and Das [10, 11], Parhi and Padhi [12], Skerlik [13],
Tiryaki and Yaman [14], Aktas and Tiryaki [1]. It is interesting to note that there are
third order delay differential equations which have only oscillatory solutions or have
both oscillatory and nonoscillatory solutions. For example,

y′′′(t) + 2y′(t) + y(t− π/2) = 0

admit an oscillatory solution y1(t) = sin t and a nonoscillatory solution y2(t) = eλt,
where λ < 0 is a root of the characteristic equation of this equation, namely

λ3 + 2λ+ e−λπ/2 = 0.

On the other hand, all solutions of

y′′′(t) + y(t− τ) = 0, τ > 0,

are oscillatory if and only if τe > 3 (see [9]). But the corresponding ordinary differ-
ential equation

y′′′(t) + y(t) = 0,

admits a nonoscillatory solution y1(t) = e−t and oscillatory solutions y2(t) =
et/2 sin

(√
3/2t

)
and y3(t) = et/2 cos

(√
3/2t

)
.

In the literature there are some papers and books, for example Agarwal et al. [2],
Grace and Lalli [5], Parhi and Das [10, 11], Parhi and Padhi [12], Skerlik [13], and
Tiryaki and Yaman [14], which deal with the oscillatory and asymptotic behavior
of solutions of functional differential equations. In [1, 15], the authors used a gen-
eralized Riccati transformation and an integral averaging technique for establishing
some sufficient conditions which insure that any solution of equation (1.1) oscillates
or converges to zero. The purpose of this note is to improve and unify the results in
[1, 15] and present some new sufficient conditions which insure that any solution of
equation (1.1) oscillates when equation (∗∗) is nonoscillatory, or oscillatory.
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We also apply our results to the equations of the form

a3(t)y
′′′(t) + a2(t)y

′′(t) + a1(t)y
′(t) + q∗(t)f(x(g(t))) = 0, (1.2)

where ai(t), i = 1, 2, 3, and q∗(t) are positive continuous functions on [t0,∞), g and
f are as in equation (1.1).

2. MAIN RESULTS

For the sake of brevity, we define

L0y(t) = y(t), Liy(t) = ri(t) (Li−1y(t))
′
, i = 1, 2, and L3y(t) = (L2y(t))

′

for t ∈ [t0,∞). So equation (1.1) can be written as

L3y(t) + p(t)y′(t) + q(t)f(y(g(t))) = 0.

Remark 2.1. If y is a solution of (1.1), then z = −y is a solution of the equation

L3z(t) + p(t)z′(t) + q(t)f∗(z(g(t))) = 0,

where f∗(z) = −f(−z) and zf∗(z) > 0 for z 6= 0. Thus, concerning nonoscillatory
solutions of (1.1) we can restrict our attention only to solutions which are positive
for all large t.

Define the functions

R1(t, t1) =

t∫

t1

ds

r1(s)
and R2(t, t1) =

t∫

t1

ds

r2(s)

for t0 ≤ t1 ≤ t <∞. We assume that

R1(t, t0)→∞ as t→∞, (2.1)

and
R2(t, t0)→∞ as t→∞. (2.2)

In this section we state and prove the following lemmas which we will use in the proof
of our main results.

Lemma 2.2 ([15]). Suppose that

(r2(t)z
′(t))

′
+ (p(t)/r1(t)) z(t) = 0 (2.3)

is nonoscillatory. If y is a nonoscillatory solution of (1.1) on [t1,∞), t1 ≥ t0, then
there exists a t2 ∈ [t1,∞) such that y(t)L1(y(t)) > 0 or y(t)L1(y(t)) < 0 for t ≥ t2.
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In the following two lemmas, we consider the second order delay differential equa-
tion

(r2(t)x
′(t))

′
= Q(t)x(h(t)), (2.4)

where r2(t) is as in equation (1.1), Q ∈ C(I,R+), and h ∈ C1(I,R) such that h(t) ≤ t,
h′(t) ≥ 0 for t ≥ t0 and h(t)→∞ as t→∞.

Lemma 2.3. If

lim sup
t→∞

t∫

h(t)

Q(s)R2(h(t), h(s))ds > 1, (2.5)

then all bounded solutions of equation (2.4) are oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (2.4), say x(t) > 0
and x(h(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then there exists a t2 ≥ t1 such that

x(t) > 0, x′(t) < 0 and (r2(t)x
′(t))′ ≥ 0 for t ≥ t2. (2.6)

Otherwise, x′(t) > 0 for t ≥ t1 and so, there exist a constant c∗ > 0 and a t∗1 ≥ t1
such that

r2(t)x
′(t) ≥ c∗ for t ≥ t∗1.

Integrating this inequality from t∗1 to t and using condition (2.2), we see that x(t)→∞
as t→∞, which contradicts the fact that x(t) is bounded on [t1,∞).

Now, for v ≥ u ≥ t2 we have

x(u)− x(v) = −
v∫

u

x′(s)ds = −
v∫

u

(r2(s))
−1 (r2(s)x

′(s)) ds

≥




v∫

u

(r2(s))
−1ds


 (−r2(v)x′(v)) = R2(v, u) (−r2(v)x′(v)) .

(2.7)

For t ≥ s ≥ t2, setting u = h(s) and v = h(t) in (2.7), we get

x(h(s)) ≥ R2(h(t), h(s)) (−r2(h(t))x′(h(t))) . (2.8)

Integrating equation (2.4) from h(t) ≥ t2 to t, we have

−r2(h(t))x′(h(t)) ≥ r2(t)x′(t)− r2(h(t))x′(h(t)) =
t∫

h(t)

Q(s)x(h(s))ds. (2.9)

Using (2.8) in (2.9), we have

−r2(h(t))x′(h(t)) ≥




t∫

h(t)

Q(s)R2(h(t), h(s))ds


 (−r2(h(t))x′(h(t)))
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or

1 ≥
t∫

h(t)

Q(s)R2(h(t), h(s))ds. (2.10)

We take the lim sup as t→∞ of both sides of inequality (2.10), we have a contradic-
tion to condition (2.5) and this completes the proof of the lemma.

Lemma 2.4. If

lim sup
t→∞

t∫

h(t)

(
r−12 (u)

t∫

u

Q(s)ds

)
du > 1, (2.11)

then all bounded solutions of equation (2.4) are oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (2.4), say x(t) > 0
and x(h(t)) > 0 for t ≥ t1 for some t1 ≥ t0. As in Lemma 2.3, we obtain (2.6).
Integrating equation (2.4) from u to t, we have

r2(t)x
′(t)− r2(u)x′(u) =

t∫

u

Q(s)x(h(s))ds

or

−x′(u) ≥
(
(
r−12 (u)

) t∫

u

Q(s)ds

)
x(h(t)).

Integrating this inequality from h(t) to t, we get

x(h(t)) ≥




t∫

h(t)


(r−12 (u)

) t∫

u

Q(s)ds


 du


x(h(t))

or

1 ≥




t∫

h(t)


(r−12 (u)

) t∫

u

Q(s)ds


 du


 .

The rest of the proof is similar to that of Lemma 2.3 and hence is omitted. This
completes the proof.

Now, we are ready to establish the main results of this note.

Theorem 2.5. Let conditions (2.1), (2.2) hold and equation (2.3) is nonoscillatory.
If there exist two functions ρ and h ∈ C1(I,R) such that g(t) ≤ h(t) < t, h′(t) ≥ 0
and ρ(t) > 0 for t ≥ t0 such that

lim sup
t→∞

t∫

t1

[
Kρ(s)q(s)− r1(g(s)) (ρ

′(s)r1(s)− ρ(s)p(s)R2(g(s), t1))
2

4ρ(s)R2(g(s), t1)g′(s)r21(s)

]
ds =∞,

(2.12)
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for all large t and condition (2.5) or (2.11) holds with

Q(t) = [Kq(t)R1(h(t), g(t))− (p(t)/r1(t))] ≥ 0 for t ≥ t1,

then equation (1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. Without loss of
generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1 for some t1 ≥ t0.
It follows from Lemma 2.2 that L1y(t) < 0 or L1y(t) > 0 for t ≥ t1. If L1y(t) > 0 for
t ≥ t1, then one can easily see that L2y(t) > 0 for t ≥ t1. Otherwise, L2y(t) < 0 for
t ≥ t1 as so there exist a constant c∗ < 0 and a t∗1 ≥ t1 such that

L1y(t) ≤
c∗

r2(t)
for t ≥ t∗1.

Integrating this inequality from t∗1 to t and using condition (2.2) we see that
L1y(t)→ −∞ as t→∞. Thus there exist a constant c∗∗ < 0 and a t∗∗1 ≥ t∗1 such that

y′(t) ≤ c∗∗

r1(t)
for t ≥ t∗∗1 .

Integrating this inequality from t∗1 to t and using condition (2.1) we find that
y(t)→ −∞ as t → ∞, which contradicts the fact that y(t) > 0 for t ≥ t1. Next,
we define

w(t) = ρ(t)
L2y(t)

y(g(t))
for t ≥ t1. (2.13)

First we claim that

L1y(t) ≥ L1y(g(t)) ≥ R2(g(t), t1)L2 (y(g(t))) ≥ R2(g(t), t1)L2 (y(t)) for t ≥ t1.
(2.14)

To this end we have,

L1y(g(t)) ≥
g(t)∫

t1

(L1y(s)
′) ds =

g(t)∫

t1

1

r2(s)
L2y(s)ds ≥ L2y(g(t))R2(g(t), t1).

Since L3y(t) ≤ 0, we get L2y(g(t)) ≥ L2y(t). This completes the proof of the claim.
By equation (1.1) and (2.14), we have

w′(t) ≤ −Kρ(t)q(t)−
[
w2(t)

(
R2(g(t), t1)g

′(t)
r1(g(t))ρ(t)

)
− w(t)ρ

′(t)
ρ(t)

− ρ(t)R2(g(t), t1)

r1(t)

]
,

(2.15)
and hence

w′(t) ≤ −Kρ(t)q(t) + r1(g(t)) (ρ
′(t)r1(t)− ρ(t)p(t)R2(g(t), t1))

2

4ρ(t)R2(g(t), t1)g′(t)r21(t)
.
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Integrating this inequality from t1 to t we have

t∫

t1

[
Kρ(s)q(s)− r1(g(s)) (ρ

′(s)r1(s)− ρ(s)p(s)R2(g(s), t1))
2

4ρ(s)R2(g(s), t1)g′(s)r21(s)

]
ds

≤ w(t1)− w(t) ≤ w(t1)

which contradicts condition (2.2). Next, we let L1y(t) < 0 for t ≥ t1 and consider the
function L2y(t). The case L2y(t) ≤ 0 cannot hold for all large t, say t ≥ t2 ≥ t1, since
by integration of inequality

y′(t) ≤ L2y(t2)

r1(t)
, t ≥ t2,

we obtain from (2.1) y(t) < 0 for all large t, a contradiction.
Let y(t) > 0, L1y(t) < 0 and L2y(t) ≥ 0 for all large t, say t ≥ t3 ≥ t2. Now, for

v ≥ u ≥ t3, we have

y(u)− y(v) = −
v∫

u

1

r1(τ)
(r1(τ)y

′(τ)) dτ ≥




v∫

u

1

r1(τ)
dτ


 (−L1y(v))

= R1(v, u) (−L1y(v)) .

Setting u = g(t) and v = h(t), we get

y(g(t)) ≥ R1(h(t), g(t)) (−L1y(h(t))) = R1(h(t), g(t))x(h(t)) for t ≥ t3,

where x(t) = −L1y(t) > 0 for t ≥ t3. From equation (1.1) and the fact that x is
decreasing and g(t) ≤ h(t) ≤ t we obtain

(r2(t)x
′(t))

′
+ (p(t)/r1(t))x(h(t)) ≥ Kq(t)R1(h(t), g(t))x(h(t))

or
(r2(t)x

′(t))
′ ≥ (Kq(t)R1(h(t), g(t))− (p(t)/r1(t)))x(h(t)) for t ≥ t3.

Proceeding exactly as in the proof of Lemma 2.3 and Lemma 2.4, we obtain the
desired conclusion completing the proof of the theorem.

Remark 2.6. From the proof of Theorem 2.5 we obtain

w′(t) ≤ −Kρ(t)q(t) + r1(g(t)) (P (t, t1))
2

4ρ(t)R2(g(t), t1)g′(t)r21(t)
,

where P (t, t1) = ρ′(t)r1(t) − ρ(t)p(t)R2(g(t), t1). Now, if P (t, t1) ≥ 0 for t ≥ t3, we
have

ρ′(t)r1(t) ≥ P (t, t1) for t ≥ t3,
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and hence

w′(t) ≤ −Kρ(t)q(t) + r1(g(t)) (ρ
′(t)r1(t))

2

4ρ(t)R2(g(t), t1)g′(t)r21(t)
for t ≥ t3.

It is easy to see that condition (2.12) can be replaced by

lim sup
t→∞

t∫

t1

[
Kρ(s)q(s)− r1(g(s)) (ρ

′(s)r1(s))
2

4ρ(s)R2(g(s), t1)g′(s)r21(s)

]
ds =∞ (2.16)

for all large t.
Next, if the function P (t, t1) ≤ 0 for t ≥ t3, we see that condition (2.12) can be

replaced by
∞∫

t1

ρ(s)q(s)ds =∞, (2.17)

for all large t.
Finally, if ρ′(t) ≤ 0 for t ≥ t3, we see from (2.15) that

w′(t) ≤ −Kρ(t)q(t) + ρ(t)
R2(g(t), t1)

r1(t)
,

and so, condition (2.12) can replaced by

lim sup
t→∞

t∫

t1

[
Kρ(s)q(s)− ρ(s)R2(g(s), t1)

r1(s)

]
ds =∞, (2.18)

for all large t. The details are left to the reader.

The following examples are illustrative.

Example 2.7. Consider the equation

y′′′(t) + e−ty′(t) + (1− e−t)y
(
t− 5π

2

)
= 0. (2.19)

It is easy to check that all conditions of Theorem 2.5 are satisfied for h(t) = t − 2π,
K = 1 and ρ(t) = 1 and hence equation (2.19) is oscillatory. One such solution is
y(t) = sin t.

Example 2.8. Consider the equation

y′′′(t) + e2−2ty′(t) +
1

e
y(t− 1)

(
1 + y2(t− 1)

)
= 0. (2.20)

Here we take K = 1, ρ(t) = 1 and h(t) = t − 1/2. Now, it is easy to check that all
hypotheses of Theorem 2.5 are fulfilled except conditions (2.5) and (2.11). We note
that equation (2.20) admits the nonoscillatory solution y(t) = e−t.
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Next, we present the following comparison result.

Theorem 2.9. If in Theorem 2.5 the condition (2.12) is replaced by the first order
delay equation

w′(t) +


 p(t)
r1(t)

R2(g(t), t1) +Kq(t)




t∫

t1

R2(g(s), t1)

r1(s)
ds




w(g(t)) = 0, (2.21)

is oscillatory, then the conclusion of Theorem 2.5 holds.

Proof. Let y(t) be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. Without loss of
generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1 for some t1 ≥ t0.
It follows from Lemma 2.2 that L1y(t) < 0 or L1y(t) > 0 for t ≥ t1. If L1y(t) > 0
for t ≥ t1, then one can easily see that L2y(t) > 0 for t ≥ t1. As in the proof of
Theorem 2.5, we obtain (2.14).

From (2.14) we have

r1(t)y
′(t) = L1y(t) ≥ R2(g(t), t1)L2 (y(g(t))) for t ≥ t1.

Dividing this inequality by r1(t) and integrating from t1 to t one can easily find

y(t) ≥




t∫

t1

R2(g(s), t1)

r1(s)
ds


L2y(g(t)). (2.22)

Using (2.14) and (2.22) in equation (1.1) we have

w′(t) +

(
p(t)

r1(t)

)
R2(g(t), t1)w(g(t)) +Kq(t)




t∫

t1

R2(g(s), t1)

r1(s)
ds


w(g(t)) ≤ 0,

where w(t) = L2y(t) > 0. This inequality has a positive solution and hence by Theo-
rem 2.6.3 in [2], equation (2.21) has a positive solution, which is a contradiction. The
proof of the case when L1y(t) < 0 for t ≥ t1 is similar to that of Theorem 2.5 and
hence is omitted. This completes the proof.

The following result is immediate.

Corollary 2.10. If in Theorem 2.5 the condition (2.12) is replaced by

lim inf
t→∞

t∫

g(t)


 p(u)
r1(u)

R2(g(u), t1) +Kq(u)




u∫

t1

R2(g(s), t1)

r1(s)
ds




 du ≥ 1

e
, (2.23)

then the conclusion of Theorem 2.5 holds.
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Next, if equation (2.1) is oscillatory, we give the following result.

Theorem 2.11. Let conditions (2.1), (2.2) hold and equation (2.3) is oscillatory. If
there exists a function h ∈ C(I,R) such that g(t) ≤ h(t) ≤ t and h′(t) ≥ 0 for t ≥ t0
such that (2.5) or (2.11) holds with Q(t) is as in Theorem 2.5, then every solution y
of equation (1.1) either y(t) is oscillatory or y′(t) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (1.1) on [t1,∞), t ≥ t1. Without loss of
generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1 for some t1 ≥ t0.
Now, we consider the case L1y(t) < 0 or L1y(t) > 0 for t ≥ t1. If L1y(t) > 0 for t ≥ t1
holds, then equation (1.1) becomes

(r2(t)x
′(t))

′
+ (p(t)/r1(t))x(t) ≤ 0 for t ≥ t2 ≥ t1,

where x(t) = L1y(t) > 0. By [6, Lemma 2.6], equation (2.3) has a positive solution, a
contradiction. The proof of the case when L1y(t) < 0 for t ≥ t2 ≥ t1 is similar to that
of Theorem 2.5 and hence is omitted. This completes the proof of the theorem.

Example 2.12. Consider the equation

y′′′(t) +
1

2
y′(t) +

1

2
y
(
t− 3π

2

)
= 0. (2.24)

Let h(t) = t−π. It is easy that to check that all hypotheses of Theorem 2.9 are satisfied
and hence every solution y of equation (2.24) is oscillatory or y′ is oscillatory. One
such solution is y(t) = sin t. We note that none of the results in [3, 8, 10–15] are
applicable to equation (2.24).

Finally, we can easily extend Theorems 2.5 and 2.9 to the equation
(
r2(t) (r1(t)y

′(t))
′
)′

+ p(t)y′(h(t)) + q(t)f(y(g(t))) = 0, (2.25)

where h ∈ C(I,R) such that g(t) ≤ h(t) ≤ t and h′(t) ≥ 0 for t ≥ t0.
Theorem 2.13. Let conditions (2.1), (2.2) hold and the equation

(r2(t)x
′(t))

′
+ (p(t)/r1(h(t)))x(h(t)) = 0 (2.26)

is oscillatory. If condition (2.5) or (2.11) holds with

Q(t) = [Kq(t)R1(h(t), g(t))− (p(t)/r1(h(t)))] ≥ 0 for t ≥ t1,

then every solution y of equation (2.25) either y(t) is oscillatory or y′(t) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (2.25) on [t1,∞), t ≥ t1. Without loss
of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1 for some t1 ≥ t0.
As in the proof of Theorem 2.5, we obtain either L1y(t) < 0 or L1y(t) > 0 for t ≥ t1.
If L1y(t) > 0 for t ≥ t1 holds, then equation (2.25) becomes

(r2(t)x
′(t))

′
+ (p(t)/r1(h(t)))x(h(t)) ≤ 0 for t ≥ t2 ≥ t1, (2.27)
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where x(t) = L1y(t) > 0. By [6, Lemma 2.6], equation (2.26) has a positive solution, a
contradiction. The proof of the case when L1y(t) < 0 for t ≥ t2 ≥ t1 is similar to that
of Theorem 2.5 and hence is omitted. This completes the proof of the theorem.

We note that there are many criteria in the literature for the oscillation of second
order dynamic equations, and so by applying these results to equation (1.1) and (2.25),
we can obtain many oscillation results which are of similar types to these in [1,15] or
else, of different types. The formulations of such results are left to the reader.

The following examples are illustrative.

Example 2.14. Consider the equation

y′′′(t) + y′(t− π) + 2y
(
t− 3π

2

)
= 0. (2.28)

It is easy to check that all hypotheses of Theorem 2.11 are satisfied with h(t) = t−2π
and hence every solution y of equation (2.28) either y(t) is oscillatory or y′(t) is
oscillatory. One such solution is y(t) = sin t. We note that none of the known results
appeared in the literature are applicable to this equation because of the delay that
appeared in the damping term.

Example 2.15. Consider the equation (2.28) without delays, namely

y′′′(t) + y′(t) + 2y(t) = 0. (2.29)

has a nonoscillatory solution y(t) = e−t and y′(t) = −e−t is also nonoscillatory.
Conditions which involved delays in Theorem 2.11 are not fulfilled. The solution set
of equation (2.29) is

{
e−t, et/2 cos(

√
7/2)t, et/2 sin(

√
7/2)t

}
.

We note that the presence of delays in equation (2.29) generate oscillation.

In order to apply results to equation (1.2), we can rewrite equation (1.2) in the
form

(
exp

( t∫

t0

a2(s)/a3(s)ds

)
y′′(t)

)′
+ exp

( t∫

t0

a2(s)/a3(s)ds

)
(a1(t)/a3(t)) y

′(t)

+ exp

( t∫

t0

a2(s)/a3(s)ds

)
(a1(t)/a3(t)) (q

∗(t)/a3(t)) f(y(g(t))) = 0.
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In this case, our results are applicable to equation (1.2) if we let

r1(t) = 1,

r2(t) = exp




t∫

t0

a2(s)/a3(s)ds


 ,

p(t) = exp




t∫

t0

a2(s)/a3(s)ds


 (a1(t)/a3(t))

and

q(t) = exp




t∫

t0

a2(s)/a3(s)ds


 (a1(t)/a3(t)) (q

∗(t)/a3(t)) .

The formulation of the results as a special case of these obtained above are left to the
reader.

3. GENERAL REMARKS

1. The results of this paper are presented in a form that is essentially new and of a
high degree of generality.
2. It would be of interest to consider equations (1.1) and (2.22) and try to obtain
some oscillation criteria if for p(t) < 0 and q(t) < 0.
3. Finally, we note that the results in [15] are applicable to equation (1.1) if g(t) ≤ t,
while our oscillation results are applicable to equation (1.1) if g(t) < t. Thus, as is
well known, it is the delay in equation (1.1) that can generate the oscillations.
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