PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Objective method of measuring resolution of image intensifier tubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Image intensifier tubes (IITs) are the most important modules of night vision devices used in huge numbers by military forces worldwide. Resolution is the most important parameter of IITs that presents information about ability of these devices to produce output images preserving information about details of the observed scenery. Despite its importance, it is still a common practice to measure resolution subjectively, by an observer looking at image of a resolution target created by a tested IIT. A series of attempts have been carried out to develop objective methods for accurate resolution measurement of IITs but with limited success. Accuracy of these methods varies depending on the tested IIT. This paper presents detailed analysis of proposed methods for objective resolution measurement. This analysis has shown that significant variability of accuracy of these methods is caused by one main drawback: the methods do not take into account influence of the spatial noise effect on human perception of image of the resolution target. Thus, an improved method taking into account spatial noise and its impact on target detection has been proposed. The method has been validated through experimental verification that shows accuracy improvements compared to other objective methods. This new approach improves accuracy of measurement of resolution of IITs to a level that can be accepted at professional test stations. In this way, this new method has potential to replace the standard subjective method to measure resolution of IITs and fix the biggest flaw of the standard test stations: measurement subjectivity.
Rocznik
Strony
339--352
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
  • Military University of Technology, Institute of Optoelectronics, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
  • INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Bibliografia
  • [1] Chrzanowski, K. (2013). Review of night vision technology. Opto-Electronics Review, 21(2), 153-181. https://doi.org/10.2478/s11772-013-0089-3
  • [2] Bosch, L. A. (2000, November). Image intensifier tube performance is what matters. In Image Intensifiers and Applications II (Vol. 4128, pp. 65-78). SPIE. https://doi.org/10.1117/12.405867
  • [3] MIL-I-49428(CR). (1989). Military specification: Image Intensifier Assembly, 18 mm, Microchannel Wafer MX-10160/AVS-6.
  • [4] MIL-PFG-4940F. (1999). Performance Specification Image Intensifier Assembly 25 Millimeter, Microchannel Inverter MX-9644/UV.
  • [5] MIL-I-49052F. (1990). Military specification: Image Intensifier assembly, 18 mm, Microchannel Wafer MX-9916/UV
  • [6] Photonis. (n.d.). Image intensifier tube ECHO. https://www.photonis.com/products/image-intensifier-tube-echo
  • [7] Photonis. (n.d.). Image intensifier tube 4G. https://www.photonis.com/products/image-intensifier-tube-4g
  • [8] HARDER digital. (n.d.). Generation II Image Intensifiers. https://harderdigital.com/products/#generation_image_intensifiers
  • [9] Stefanik, R. (1994). Image intensifier system resolution based on laboratory measured parameters [Technical Report No. 0112]. Night Vision and Electronic Sensors Directorate, Fort Belvoir.
  • [10] Wang, L., Qian, Y., & Wang, H. (2020). Objective evaluation of the resolution of low-light-level image intensifiers based on fast Fourier transform. Optical Engineering, 59(05), 1. https://doi.org/10.1117/1.oe.59.5.054106
  • [11] Qiu, Y.-F., Yan, W.-L., Hua, S.-T. (2020). Resolution research of low-light-level image intensifier based on electronic trajectory tracking. Acta Photonica Sinica, 49(12), 19-26. https://doi.org/10.3788/gzxb20204912.1223003 (in Chinese)
  • [12] Chrzanowski, K. (2015). Review of night vision metrology. Opto-electronics Review, 23(2). https://doi.org/10.1515/oere-2015-0024
  • [13] MIL-STD-150A. (1959). Military standard: Photographic lenses.
  • [14] INFRAMET. (n. d.). ITIP test station. https://www.inframet.com/Data_sheets/ITIP.pdf
  • [15] Contrast-to-noise ratio (2024, March 5). In Wikipedia. https://en.wikipedia.org/wiki/Contrast-to-noise_ratio
  • [16] Nett, B. (2022). X-ray Contrast to Noise (CNR) Illustrated Examples of Image Noise (SNR, Quantum Mottle) for Radiologic Technologists. How Radiology Works. https://howradiologyworks.com/x-ray-cnr/
  • [17] Palmer, M., & Benbow, M. (n.d). Contrast to Noise Ratio (CNR). http://www.bamrr.org/wp-content/uploads/2019/11/Bitesized-Physics-Contrast-to-Noise-Ratio.pdf
  • [18] Wang, F., Xie, X., Li, G., & Zhang, Z. (2020). Relationship between CNR and visibility of anatomical structures of cone-beam computed tomography images under different exposure parameters. Dentomaxillofacial Radiology, 49(5), 20190336. https://doi.org/10.1259/dmfr.20190336
  • [19] Barten, P. G. J. (1999). Contrast sensitivity of the human eye and its effects on image quality. In SPIE eBooks. https://doi.org/10.1117/3.353254
  • [20] Ortíz, S., Otaduy, D., & Dorronsoro, C. (2004). Optimum parameters in image intensifier MTF measurements. Proceedings of SPIE. https://doi.org/10.1117/12.578066
  • [21] Barney Smith, E. H. (2006). PSF estimation by gradient descent fit to the ESF. Proceedings of SPIE. https://doi.org/10.1117/12.643071
  • [22] Li, T., Feng, H., Xu, Z., Li, X., Cen, Z., & Li, Q. (2009). Comparison of different analytical edge spread function models for MTF calculation using curve-fitting. Proceedings of SPIE. https://doi.org/10.1117/12.832793
  • [23] Roka, A., Galambos, P., & Baranyi, P. (2009). Contrast sensitivity model of the human eye. In 4th International Symposium on Computational Intelligence and Intelligent Informatics (ISCIII). IEEE. https://doi.org/10.1109/isciii.2009.5342274
  • [24] Robson, J. G. (1966). Spatial and temporal Contrast-Sensitivity functions of the visual system. Journal of the Optical Society of America, 56(8), 1141. https://doi.org/10.1364/josa.56.001141
  • [25] Hamamatsu Photonics (n.d.). CNR (Contrast-to-Noise Ratio), eye versus machine. https://camera.hamamatsu.com/jp/en/learn/technical_information/thechnical_guide/contrast.html
Uwagi
The research presented in this paper was funded by the National Centre for Research and Development of Poland (grant no. POIR.01.01.01-00-0173/20-00).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73b51388-7cda-4172-bccc-dd83e36764d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.