PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Depositional redox conditions of the Grybów Succession (Oligocene, Polish Carpathians) in the light of petrological and geochemical indices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study details the petrology and chemistry of the Oligocene succession of the Grybów Nappe in its stratotype-locality in the Grybów tectonic window (Polish Carpathians). The section studied is composed of the Sub-Grybów Beds, the Grybów Marl Formation (GMF), and the Cergowa Beds, representing the middle to upper part of the Oligocene succession. The rocks studied consist of quartz, calcite, Na-plagioclase, muscovite and clay minerals (illite-smectite with 25–30% of smectite and kaolinite). Additionally, hematite occurs in the GMF and chlorite in the Cergowa Beds, respectively. The macerals assemblage of the GMF is dominated by landplant-derived compounds of liptinite, associated with minor amounts of vitrinite representing type II kerogen. The total organic carbon (TOC) content is between 0.45 and 6.16 wt.%. The δ13Corg values of the GMF vary between –27.1 and –27.9‰. The values of both carbon and oxygen isotopic ratios of carbonates range for δ13C from –1.1 to –4.3‰ VPDB, and for O from –1.5 to –4.8‰ VPDB. The concentrations of Co, U, Ni, As, and Mo are higher in the GMF than in the adjacent strata and positively correlate with TOC and S. Values of the TOC/S and V/V+Ni ratios are 0.7 to 3.5 and 0.67 to 0.78, respectively, and indicate anoxic conditions. The ratios of U/Th and V/Cr (0.3–2.2, 1.18–3.18, respectively) suggest the change of oxic conditions to reducing conditions occurred during the GMF deposition. This change could have been preceded by a plankton bloom, initiated by a nutrient-rich freshwater inflow that is inferred from the decrease of the δ13Ccarb values and the terrestrial detritus supply. Thermal alteration of the Grybów Succession is concluded on the basis of smectite illitisation and low δ18O values.
Rocznik
Strony
603--614
Opis fizyczny
Bibliogr. 71 poz., rys., tab., wykr
Twórcy
  • Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063, Kraków, Poland
Bibliografia
  • 1. Andreson, T.F., Arthur, M.A., 1983. Stable isotope of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. SEPM Short Course, 10: 1-151.
  • 2. Báldi, T., 1980. The early history of the Paratethys. Bulletin of Hun- garian Geological Society, 110: 456-472.
  • 3. Barnes, C.E., Cochran, J.K., 1990. Uranium removal in oceanic sediments and the oceanic U balance. Earth and Planetary Science Letters, 97: 94-101.
  • 4. Bechtel, A., Hámor-Vidó, M., Gratzer, R., Sachsenhofer, R.F., Püttmann, W., 2012. Facies evolution and stratigraphic correlation in the early Oligocene Tard Clay of Hungary as revealed by maceral, biomarkerand stable isotope composition. Marine and Petroleum Geology, 35: 55-74.
  • 5. Berner, R.A., Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur ion sedi ments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47: 855-862.
  • 6. Breit, G.N., Wanty, R.B., 1991. Vanadium accumulation in carbonaceous rocks: Areviewof geochemical controls during deposition and diagenesis. Chemical Geology, 91: 83-97.
  • 7. Bojanowski, M.J., 2007. Oligocene cold-seep carbonates from the Carpathians and their inferred relation to gas hydrates. Facies, 53: 347-360.
  • 8. Bojanowski, M.J., 2012. Geochemical paleogradient in pore wat ters controlled by AOM recorded in an Oligocene laminated limestone from the Outer Carpathians. Chemical Geology, 292-293: 45-56.
  • 9. Coplen, T.B., Brand, W.A., Gehre, M., Gröning, M., Meijer, H.J., Toman, B., Verkouteren, R.M., 2006. New guide lines for S13C measurements. Analytical Chemistry, 78: 2439-2441.
  • 10. Dill, H.,1986. Metallogenesis of Early Paleozoic graptolite shales from the Graefenthal Horst (Northern Bavaria-Federal Republic of Germany). Economic Geology, 81: 889-903.
  • 11. Espitalié, J., Bordenave, M.L., 1993. Screening techniques for source rock evaluation: tools for source rocks routine analysis: Rock-Eval pyrolysis. In: Applied Petroleum Geochemistry (ed. M.L. Bordenave): 237-272.
  • 12. Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Premiere partie. Oil & Gas Science and Technology - Revue de l'Institut Francais du Petrole, 40: 563-579.
  • 13. Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem i cal Ge ol ogy, 99: 65-82.
  • 14. Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner, C.D., Vaughan, D.J., 1996. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60: 3631-3642.
  • 15. Hoefs, J., 1997. Stable Isotope Geochemistry, Springer-Verlag, 201 pp.
  • 16. Huerta-Diaz, M.A., Morse, J.W., 1992. Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56: 2681-2702.
  • 17. Jackson, M.L., 1975. Soil Chemical Analysis - Advanced Course. Madison, Wisconsin.
  • 18. Jacobsen, S.B., Kaufman, A.J., 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161: 37-57.
  • 19. Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129.
  • 20. Koráb, T., Ďurkovič, T., 1978. Geology of Dukla Unit (Flysch of the Eastern Slovakia) (in Slovak). SGÚDŠ, Bratislava, 194 pp.
  • 21. Kotarba, M., Koltun, Y.V., 2006. Origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. AAPG Memoir 84: 395-443.
  • 22. Kotlarczyk, J., 1979. Uwagi o wieku margli bakulitowych (margli z Węgierki) w świetle formalnej rewizji oznaczeń fauny głowonogów i inoceramów (in Polish). Sprawozdania z Posiedzeń Komisji Naukowych PAN Kraków, VII-XII 1977: 103-105.
  • 23. Kotlarczyk, J., Leśniak, T., 1990. Lower part of the Menilite Formation and re iated Futoma Diatomite Member in the Skole unit of the Polish Carpathians (in Polish with English summary). Wydawnictwo AGH, Kraków, 74 pp.
  • 24. Kovač, M., Nagymarosy, A., Oszczypko, N., Ślączka, A., Csontos, L., Marunteanu, M., Matenco, L., Marton, E., 1998. Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Geodynamic Development of the Western Carpathias (ed. M. Rakus): 189-217. Slovak Geological Survey, Bratislava.
  • 25. Kozikowski, H., 1956. Ropa-Pisarzowa unit, a new tectonit unit of the Polish flysch Carpathians (in Polish with English summary). Biuletyn Instytutu Geologicznego, 110: 93-137.
  • 26. Książkiewicz, M., 1972. Budowa geologiczna Polski, t. IV Tektonika, cz. 3 Karpaty. Wyd. Geol., Warszawa, 228 pp.
  • 27. Leszczyński, S., 1997. Ori gin of the Sub-Menilite Globigerina Marl (Eocene-Oligocene transition) in the Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 67: 367-427.
  • 28. Lewan, M.D., Maynard, J.B., 1982. Factors controlling enrichment of vanadium and nickel in the bitumen or organic sediment ary rocks. Geochimica et Cosmochimica Acta, 46: 2547-2560.
  • 29. Lexa, J., Bezak, V., Elecko, M., Mello, J., Polak, M., Potfaj, M., Vozar, J., 2000. Geological map of Western Carpathians and adjacent areas 1:500,000. Geol. Surv. Slovak Republic, Bratislava.
  • 30. Mehra, O.P., Jackson, M.L., 1960. Iron oxi de removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7: 317-327.
  • 31. Meyers, P.A., 1994. Preservation of source identification of sedimentary organic matter during and after deposition. Chemical Geology, 144: 289-302.
  • 32. Morford, J.L., Emerson, S.R., Breckel, E.J., Kim, S.H., 2005. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta, 69: 5021-5032.
  • 33. Olszewska, B., 1983. A contribution of the knowledge of planktonic foraminifers of the Globigerina Submenilite Marls of the Polish
  • 34. Outer Carpathians (in Polish with English summary). Kwartalnik Geologiczny, 27 (3): 547-570.
  • 35. Oszczypko (Clowes), M., 1996. Calcareous nannoplankton of the Globigerina Marls (Leluchów Marls Member), Magura Nappe, West Carpathians. Annales Societatis Geologorum Poloniae, 66: 1-15.
  • 36. Oszczypko, N., Oszczypko-Clowes, M., 2011. Stratigraphy and tectonics of the Świątkowa Wielka Tectonic Window (Magura Nappe, Polish Outer Carpathians). Geologica Carpathica, 62: 139-154.
  • 37. Oszczypko-Clowes, M., 2008. The stratigraphy of the Oligocene deposits from the Ropa tectonic window (Grybów Nappe, Western Carpathians, Poland). Geological Quarterly, 52 (2): 127-142.
  • 38. Oszczypko-Clowes, M., Oszczypko, N., 2004. The position and age of the youngest deposits in the Mszana Dolna and Szczawa tectonic windows (Magura Nappe, Western Carpathians, Poland). Acta Geologica Polonica, 54: 339-367.
  • 39. Oszczypko-Clowes, M., Ślączka, A., 2006. Nannofossil biostratigraphy of the Oligocene deposits in the Grybów tectonic window (Grybów Unit, Western Carpathians, Poland). Geologica Carpathica, 57: 473-482.
  • 40. Peryt, T.M., Scholle, P.A., 1996. Regional setting and role of meteoric water in dolomite formation and diagenesis in an evaporite basin: studies in the Zechstein (Permian) deposits of Poland. Sedimentology, 43: 1005-1023.
  • 41. Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ United States.
  • 42. Pollastro, R., 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41: 119-133.
  • 43. Popov, S.V., Akhmetíev, M.A., Zaporozhets, N.I., Voronina, A.A., Stolyarov, A.S., 1993. Evolution of Eastern Paratethys in the late Eocene-early Miocene. Stratigraphy and Geological Correlation, 1: 10-39.
  • 44. Popov, S.V., Rögl, F., Rozanov, A.Y., Steininger, F.F., Shcherba, I.G. , Kovac, M. , 2004. Lithological-Paleogeographic maps of Paratethys - 10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg, 250: 1-46.
  • 45. Rögl, F., 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica, 50: 339-349.
  • 46. Rusu, A., 1988. Oligocene events in Transylvania (Romania) and the first separation of Paratethys. Dari de Seama ale Institutului de Geologie §i Geofizicä, 72-73: 207-223.
  • 47. Sachsenhofer, R.F., Schulz, H.-M., 2006. Architecture of Lower Oligocene source rocks in the Alpine Foreland Basin: a model for syn- and postdepositional source rock features in the Paratethyan Realm. Petroleum Geoscience, 12: 363-377.
  • 48. Sachsenhofer, R.F., Stummer, B., Georgiev, G., Dellmour, R., Bechtel , A. , Gratzer, R. , Coric , S. , 2009 . Depositional environment and hydrocarbon source potential of the Oligocene Ruslar Formation (Kamchia Depression; western Black Sea). Marine and Petroleum Geology, 26: 57-84.
  • 49. Sani, R.K., Peyton, B.M., Amonette, J.E., Geesey, G.G. , 2004. Reduction of uranium(VI) undersulfate-reducing conditions in the presence of Fe(III)-(hydr)oxides. Geochimica et Cosmochimica Acta, 68: 2639-2648.
  • 50. Schulz, H.-M., Sachsenhofer, R.F., Bechtel, A. , Polesny, H. , Wagner, L. , 2002 . The origin of hydrocarbon source rocks in the Austrian Molasse Basin (Eocene-Oligocene transition). Marine and Petroleum Geology, 19: 683-709.
  • 51. Schulz, H.M., Bechtel, A., Sachsenhofer, R.F., 2005. The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue? Global and Planetary Change, 49: 163-176.
  • 52. Sikora, W., 1960. On the stratigraphy of the series in the tectonic window at Ropa near Gorlice (Western Carpathians) (in Polish with English summary). Kwartalnik Geologiczny, 4(1): 153-170.
  • 53. Sikora, W., 1970. Geology of the Magura Nappe between Szymark Ruski and Nawojowa (in Polish with English summary). Biuletyn Instytutu Geologicznego, 235: 5-121.
  • 54. Ślączka, A., 1971. Geology of the Dukla Unit (in Polish with English summary). Prace Instytutu Geologicznego, 1: 1-63.
  • 55. Soták, J., 2010. Paleoenvironmental changes across the Eocene-Oligocene boundary: insights from the Central-Carpathian Paleogene Basin. Geologica Carpathica, 61: 1-26.
  • 56. Stopes, M.C., 1935. On the petrology of banded bituminous coals. Fuel, 14: 4-13.
  • 57. Środoń, J., 1995. Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales. Studia Geologica Polonica, 108: 9-22.
  • 58. Świdziński, H. , 1963 . Les couches de Grybów e t leu r importance pour latectonique des Karpates. Resume des communications. Congr. Geol. Ass. Karp.-Balk., 6:191-193. Warszawa-Kraków.
  • 59. Świerczewska, A., 2005. Illite-smectite as an indicator of variable uplift in the Magura Nappe (Outer Carpathians). Polskie Towarzystwo Mineralogiczne Prace Specjalne, 25: 381-386.
  • 60. Tucker, M.E., Wright, V.P., 1990. Carbonate Sedimentology. Blackwell, Oxford.
  • 61. Uhlig, V., 1888. Ergebnisse geologischer Aufnahmen in den westgalizischen Karpathen. Jahrbuch der Geologischen Reichsanstalt, 38 : 85-264 .
  • 62. Vetö , I. , 1987 . An Oligocene sink for organic carbon: upwelling in the Paratethys? Palaeogeography, Palaeoclimatology, Palaeoecology, 60: 143-153.
  • 63. Vetö, I., Hetényi, M., Demény, A., Hertelendi, E., 1995. Hydrogen index as reflecting sulphidic diagenesis in non-bioturbated shales. Organic Geochemistry, 22: 299-310.
  • 64. Vorlicek, T.P., Kahn, M.D., Kasuza, Y., Helz, G.R., 2004. Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides. Geochimica et Cosmochimica Acta, 68: 547-556.
  • 65. Wedepohl, K.H., 1971. Environmental influences on the chemical composition of shales and clays. In: Physics and Chemistry of the Earth (eds. L.H. Ahrens, F. Press, S.K. Runcorn and H.C Urey): 307-331. Pergamon, Oxford.
  • 66. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
  • 67. Wignall, P.B., 1994. Black Shales. Oxford University Press, Oxford.
  • 68. Wignall, P.B., Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298: 537-552.
  • 69. Wilson, S.A., Weber, J.H., 1979. An EPR study of the reaction of vanadium (IV) by fulvic acid. Chemical Geology, 26: 345-354.
  • 70. Ziegler, P., Roure, F., 1999. Petroleum systems of Alpine-Mediterranean foldbelts and basins. Geological Society London Special Publications, 156: 517-540.
  • 71. Żytko, K., Gucik, S., Ryłko, W., Oszczypko, N.,. Zając, R., Garlicka , L. , Nemčok, J. , Eliaš, M. , Menčik, E. , Dvorak, J., Stranik, Z. , Rakuč , M. , Matejovska , O . , 1989 . Geological map of the Western Outer Carpathians and their foreland without Quaternary formations. In: Geological Atlas of the Western Outer Carpathians and Their Foreland. Państwowy Instytut Geologiczny, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73af37c1-8369-43f4-b530-c6a59b4cf99d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.