PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A proposal of a 3D spatial database to support sustainable land use analyses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite the continuous development of geographic information systems (GIS) technology, most spatial datasets used in Poland for spatial planning purposes are still two-dimensional, like the traditional paper maps used previously. This approach makes it difficult, if not impossible, to conduct complex analyses that require three-dimensional (3D) data, for instance the identification of land use elements that could potentially have a positive or negative impact on the perception of an area as developing sustainably. Meanwhile, since 2018, the Polish Head Office of Geodesy and Cartography provides 3D models of buildings, which are a 3D representation of a significant proportion of buildings from the BDOT10k database of topographic objects. Since 2023, this resource has been successively enriched with 3D models of trees over 4 m in height. Therefore, an attempt has been made to investigate whether the available tools (especially those belonging to the free and open source software group) allow the creation of a spatial database to collect and share 3D data on at least buildings and trees. Assuming that the proposed solution is based on a relational database management system (RDBMS), it should allow for adequate efficiency in processing of large data sets. Thanks to built-in mechanisms, typical for spatial databases, it should also be possible to perform advanced spatial analyses in this environment. The applied system should allow data export in common formats and their visualisation. The studies carried out indicate that there are appropriate tools which, if put together in the right way, will make it possible, in particular, to analyse the manifestations of sustainable land use.
Czasopismo
Rocznik
Strony
107--116
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • AGH University of Krakow, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, Department of Photogrammetry, Remote Sensing, and Spatial Engineering, Krakow, Poland
Bibliografia
  • 1. Biljecki F., Arroyo Ohori K., Ledoux H., Peters R., Stoter J. (2016). Population estimation using a 3D city model: A multi-scale country-wide study in the Netherlands. PloS one, 11(6), e0156808. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0156808&type=printable [access: 31.05.2024].
  • 2. Biljecki F., Stoter J., Ledoux H., Zlatanova S., Çöltekin A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889. https://www.mdpi.com/2220-9964/4/4/2842/pdf [access: 31.05.2024].
  • 3. Bydłosz J., Cichociński P., Basista I. (2010). The possibilities of geoinformation resources recorded in GML accessing with chosen GIS software. Geomatics and Environmental Engineering, 4(1), 33–44. https://bibliotekanauki.pl/articles/386112.pdf [access: 31.05.2024].
  • 4. Chaturvedi K., Yao Z., Kolbe T.H. (2015). Web-based Exploration of and interaction with large and deeply structured semantic 3D city models using HTML5 and WebGL. In: Bridging Scales-Skalenübergreifende Nah-und Fernerkundungsmethoden, 35. Wissenschaftlich-Technische Jahrestagung der DGPF. https://mediatum.ub.tum.de/doc/1245285/document.pdf [access: 31.05.2024].
  • 5. Chenaux A., Murphy M., Pavia S., Fai S., Molnar T., Cahill J., ... & Corns A. (2019). A review of 3D GIS for use in creating virtual historic Dublin. https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1155&context=beschreccon [access: 31.05.2024].
  • 6. Eller L., Svoboda P., Rupp M. (2022). A deep learning network planner: Propagation modeling using real-world measurements and a 3D city model. IEEE Access, 10, 122182-122196. https://ieeexplore.ieee.org/iel7/6287639/6514899/09954403.pdf [access: 31.05.2024].
  • 7. Gholami M., Torreggiani D., Tassinari P., Barbaresi A. (2022). Developing a 3D city digital twin: Enhancing walkability through a green pedestrian network (GPN) in the City of Imola, Italy. Land, 11(11), 1917. https://www.mdpi.com/2073-445X/11/11/1917/pdf [access: 31.05.2024].
  • 8. Gröger G., Kolbe T.H., Nagel C., Häfele K.H. (2012). OGC City Geography Markup Language (CityGML) Encoding Standard, Version 2.0. Open Geospatial Consortium, Doc. No. 12-019. https://portal.ogc.org/files/?artifact_id=47842 [access: 31.05.2024].
  • 9. Harter H., Willenborg B., Lang W., Kolbe T. H. (2023). Life Cycle Assessment of building energy systems on neighbourhood level based on semantic 3D city models. Journal of Cleaner Production, 407, 137164. https://www.sciencedirect.com/science/article/pii/S0959652623013227 [access: 31.05.2024].
  • 10. Johansson T., Segerstedt E., Olofsson T., Jakobsson M. (2016). Revealing social values by 3D city visualization in city transformations. Sustainability, 8(2), 195. https://www.mdpi.com/2071-1050/8/2/195/pdf S0959652623013227 [access: 31.05.2024].
  • 11. Katal A., Mortezazadeh M., Wang L.L., Yu H. (2022). Urban building energy and microclimate modeling–From 3D city generation to dynamic simulations. Energy, 251, 123817. https://www.sciencedirect.com/science/article/pii/S0360544222007204 [access: 31.05.2024].
  • 12. Ledoux H., Arroyo Ohori K., Kumar K., Dukai B., Labetski A., Vitalis S. (2019). CityJSON: A compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and Standards, 4(1), 1–12. https://link.springer.com/content/pdf/10.1186/s40965-019-0064-0.pdf [access: 31.05.2024].
  • 13. Morton P.J., Horne M., Dalton R.C., Thompson E.M. (2012). Virtual city models: Avoidance of obsolescence. In Education and Research in Computer Aided Architectural Design in Europe–30th eCAADe Conference (pp. 213–224). https://papers.cumincad.org/data/works/att/eCAADe_2012-vol-1-lowres.pdf#page=214 [access: 31.05.2024].
  • 14. Noardo F., Arroyo Ohori K., Biljecki F., Ellul C., Harrie L., Krijnen T., ... & Stoter J. (2021). Reference study of CityGML software support: The GeoBIM benchmark 2019 – Part II. Transactions in GIS, 25(2), 842–868. https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12710 [access: 31.05.2024].
  • 15. QGIS.org, (2024). QGIS Geographic Information System. QGIS Association. http://www.qgis.org [access: 31.05.2024].
  • 16. Rodríguez L.R., Duminil E., Ramos J.S., Eicker U. (2017). Assessment of the photovoltaic potential at urban level based on 3D city models: A case study and new methodological approach. Solar Energy, 146, 264–275. https://core.ac.uk/download/pdf/288003205.pdf [access: 31.05.2024].
  • 17. Schmid M. (2021). Towards Storing 3D Model Graphs in Relational Databases. Dissertation (unpublished). University of Passau. https://opus4.kobv.de/opus4-uni-passau/files/1035/Matthias_Schmid_Dissertation_print.pdf [access: 31.05.2024].
  • 18. Sellers G., Obert J., Cozzi P., Ring K., Persson E., de Vahl J., van Waveren J. M.P. (2013). Rendering massive virtual worlds. In ACM SIGGRAPH 2013 Courses (pp. 1–88). https://dl.acm.org/doi/abs/10.1145/2504435.2504458 [access: 31.05.2024].
  • 19. Virtanen J.P., Jaalama K., Puustinen T., Julin A., Hyyppä J., Hyyppä H. (2021). Near real- time semantic view analysis of 3D city models in web browser. ISPRS International Journal of Geo-Information, 10(3), 138. https://www.mdpi.com/2220-9964/10/3/138/pdf [access: 31.05.2024].
  • 20. Vretanos P.A. (2014). OGC Web Feature Service 2.0 Interface Standard – With Corrigendum, Version 2.0.2. Open Geospatial Consortium, Doc. No. 09-025r2. https://docs.ogc.org/is/09-025r2/09-025r2.html [access: 31.05.2024].
  • 21. Willenborg B., Sindram M., Kolbe T.H. (2018). Applications of 3D city models for a better understanding of the built environment. In: M. Behnisch, G. Meinel (ed.), Trends in Spatial Analysis and Modelling – Decision-Support and Planning Strategies, Springer Verlag. URL https://mediatum.ub.tum.de/doc/1348882/document.pdf [access: 31.05.2024].
  • 22. Yao Z., Nagel C., Kunde F., Hudra G., Willkomm P., Donaubauer A., ... & Kolbe T.H. (2018). 3DCityDB-a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospatial Data, Software and Standards, 3(1), 1–26. https://link.springer.com/content/pdf/10.1186/s40965-018-0046-7.pdf [access: 31.05.2024].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73ac28bd-00e7-4c20-8ef2-ee7f0e96896e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.