Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of a study to determine the heat deflection temperature (HDT) and Vicat softening temperature (VST) of polymer matrix powder composites used for ablative shielding. The issue is of particular importance since, during ablative tests, the composite material is partially burnt (ablative layer). However, its remaining parts are additionally heated to a higher temperature, which is consequently associated with a change in the visco-elastic properties that depend, among other things, on the VST and HDT temperatures. In the conducted research, the authors used different mass percentages of powder modifiers (montmorillonite, halloysite, mullite, carbon nanotubes, silicon carbide) matrix base epoxy resin LH 145 Havel with the hardener H147 in the experiments. Apart from observing thermal properties that may change due to a modification of the composition of the composites, the effect of conditioning of the samples on the test results was also noticed. It is preheating a composite at a temperature as low as 55°C was observed to increase the HDT and VST by approximately 20°C and the composite hardness by approximately 3-7%.
Czasopismo
Rocznik
Tom
Strony
721--729
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Aviation, Polish Air Force University, Dywizjonu 303 Street No 35, 08-521 Deblin, Poland
autor
- Faculty of Aviation, Polish Air Force University, Dywizjonu 303 Street No 35, 08-521 Deblin, Poland
autor
- Wizz Air Hungary Ltd., Laurus Offices, Kőér Street 2/A, Building B, H-1103, Budapest, Hungary
autor
- Mechanical and Electrical Engineering Faculty, Polish Naval Academy, ul. Śmidowicza 69, 81-127 Gdynia, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street, No 36, 20-618 Lublin, Poland
autor
- HVAC Department, Bialystok University of Technology, 15-351 Bialystok, Poland
Bibliografia
- 1. Szczepaniak R, Rolecki K, Krzyzak A. The influence of the powder additive upon selected mechanical properties of a composite. IOP Conference Series: Materials Science and Engineering 2019;634(1):01200. 76th Global Conference on Polymer and Com-posite Materials. PCM 2019. Bangkok. Available from: https://doi.org/10.1088/1757-899X/634/1/012007
- 2. Borowiec M, Gawryluk J, Bochenski M. Influence of Mechanical Couplings on the Dynamical Behavior and Energy Harvesting of a Composite Structure. Polymers 2021;13:66. Available from: https://doi.org/10.3390/polym13010066
- 3. Sławski S, Szymiczek M, Kaczmarczyk J, Domin J, Świtoński E. Low Velocity Impact Response and Tensile Strength of Epoxy Compo-sites with Different Reinforcing Materials. Materials 2020;13:3059. Available from: https://doi.org/10.3390/ma13143059
- 4. Kosicka E, Borowiec M, Kowalczuk M, Krzyzak A, Szczepaniak. R. Influence of the Selected Physical Modifier on the Dynamical Behav-ior of the Polymer Composites Used in the Aviation Industry. Materi-als 2020;13:5479. Available from: https://doi.org/10.3390/ma13235479
- 5. Komorek. A; Komorek Z, Krzyzak A, Przybylek P, Szczepaniak R. Impact of Frequency of Load Changes in Fatigue Tests on the Tem-perature of the Modified Polymer. International Journal of Thermo-physics 2017;38(8):128. Available from: https://doi.org/10.1007/s10765-017-2254-2
- 6. Szczepaniak R, Kozun G, Przybylek P, Komorek A, Krzyzak A, Woroniak G. The effect of the application of a powder additive of a phase change material on the ablative properties of a hybrid compo-site. Composite Structures 2021;256:113041. Available from: https://doi.org/10.1016/j.compstruct.2020.113041
- 7. Krzyzak A, Kosicka E, Szczepaniak R, Szymczak T. Evaluation of the properties of polymer composites with carbon nanotubes in the aspect of their abrasive wear. Journal of Achievements in Materials and Manufacturing Engineering Open Access 2019;95:5–12. Availa-ble from: http://doi.org/10.5604/01.3001.0013.7619
- 8. Mrówka M, Woźniak A, Prężyna S, Sławski S. The Influence of Zinc Waste Filler on the Tribological and Mechanical Properties of Sili-cone-Based Composites. Polymers 2021;13:585. Available from: https://doi.org/10.3390/polym13040585
- 9. Yogeshwarana S, Natrayan L, Rajaraman S, Parthasarathi S, Nestro S. Experimental investigation on mechanical properties of Epoxy/graphene/fish scale and fermented spinach hybrid bio compo-site by hand lay-up technique. Materials Today: Proceedings 2021:37(2):1578-1583. Available from: https://doi.org/10.1016/j.matpr.2020.07.160
- 10. Zagorodnuk LKh, Lesovik VS, Elistratkin MY, Sumskoy DA, Makhor-tov DS, Zolotykh SV. New methods for manufacturing composite ma-terials. Journal of Physics: Conference Series 2019;1353:012060.
- 11. Kia HG, Simmer JC. A New Method for Producing Composite Panels with Textured Finish using Open Molding Process: Part I - Technolo-gy Development. Journal of Composite Materials 2006;40(4):333-344. Available from: https://doi.org/10.1177/0021998305055191
- 12. Petrucci R, Torre L. Filled Polymer Composites. In: Modification of Polymer Properties; William Andrew Publishing (Norwich, USA). 2017;23–46.
- 13. Amgoth C, Phan C, Banavoth M, Rompivalasa S, Tang G. Polymer Properties: Functionalization and Surface Modified Nanoparticles. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine; IntechOpen (London, UK). 2019. Available from: https://doi.org/10.5772/intechopen.84424
- 14. Jasso-Gastine CF, Soltero-Martínez JFA, Mendizábal E. Introduction: Modifiable Characteristics and Applications. In: Modification of Poly-mer Properties; William Andrew Publishing (Norwich, USA). 2017; 1–21.
- 15. Ambrogi V, Carfagna C, Cerruti P, Marturano V. Additives in Poly-mers. In Modification of Polymer Properties; William Andrew Publish-ing (Norwich, USA). 2017;87–108.
- 16. Gooch JW. Heat Deflection Temperature. In: Gooch J.W. (eds) Encyclopedic Dictionary of Polymers. Springer. 2011 (New York, USA). Available from: https://doi.org/10.1007/978-1-4419-6247-8_5831
- 17. Gooch JW. Vicat Test. In: Gooch J.W. (eds) Encyclopedic Dictionary of Polymers. Springer. 2011 (New York, USA). Available from: https://doi.org/10.1007/978-1-4419-6247-8_12522
- 18. Bee SL, Abdullah MAA, Bee ST, Sin LT, Rahmat AR. Polymer nano-composites based on silylated-montmorillonite: A review. Progress in Polymer Science 2018;85:57–82. Available from: https://doi.org/10.1016/j.progpolymsci.2018.07.003
- 19. Guo YX, Liu JH, Gates WP. et al. Organo-Modification Of Montmoril-lonite. Clays Clay Miner. 2020;68:601–622. Available from: https://doi.org/10.1007/s42860-020-00098-2
- 20. Mishra S, Shimpi NG, Mali AD. Effect of surface modified montmoril-lonite on photo-oxidative degradation of silicone rubber composites. Macromolecular Research 2013;21(5):466–473.
- 21. Tokobaro PEA, Larocca NM, Backes EH, Pessan LA. Effects of mineral fillers addition and preparation method on the morphology and electrical conductivity of epoxy/multiwalled carbon nanotube nanocomposites. Polymer Engineering and Science 2021;61(2):538-550. Available from: https://doi.org/10.1002/pen.25598
- 22. Ramesh P, Prasad BD, Narayana KL. Influence of Montmorillonite Clay Content on Thermal. Mechanical. Water Absorption and Biodeg-radability Properties of Treated Kenaf Fiber/ PLA-Hybrid Biocompo-sites. Silicon 2021;13(1):109-118. Available from: https://doi.org/10.1007/s12633-020-00401-9
- 23. Silva LCS, Busto RV, Camani PH, Zanata L, Coelho LHG, Benassi RF, Rosa DS. Influence of Montmorillonite and Clinoptilolite on the Properties of Starch/Minerals Biocomposites and Their Effect on Aquatic Environments. Journal of Polymers and the Environment 2021;29(2):382–391. Available from: https://doi.org/10.1007/s10924-020-01873-x
- 24. Szpilska K, Czaja K, Kudła S. Halloysite nanotubes as polyolefin fillers. Polimery (Polymers) 2015;6:357-422. Available from: https://doi.org/10.14314/polimery.2015.359
- 25. Muhammad J, Hafiz M, Naveed M. Properties and Modification Methods of Halloysite Nanotubes: A State-Of-The-Art Review. J. Chil. Chem. Soc. 2018;63(3):4109-4125. Available from: http://dx.doi.org/10.4067/s0717-97072018000304109
- 26. Bordeepong S, Bhongsuwan D, Pungrassami T, Bhongsuwan T. Characterization of halloysite from thung yai district. Nakhon Si Thammarat Province. in Southern Thailand. Songklanakarin Journal of Science and Technology 2011;33(5):599-607.
- 27. Haddar AE, Gharibi E, Azdimousa A, Fagel N, Hassani IE, Ouahabi ME. Characterization of halloysite (North East Rif. Morocco): evalua-tion of its suitability for the ceramics industry. Clay Minerals 2018;53:65-78.
- 28. Luo Y, Mills DK. The Effect of Halloysite Addition on the Material Properties of Chitosan–Halloysite Hydrogel Composites. Gels 2019;5:40. Available from: https://doi.org/10.3390/gels5030040
- 29. Peters PWM, Daniels B, Clemens F, Vogel WD. Mechanical charac-terisation of mullite-based ceramic matrix composites at test temper-atures up to 1200°C. Journal of the European Ceramic Society 2000;20(5):531-535. Available from: https://doi.org/10.1016/S0955-2219(99)00250-2
- 30. Schneider H, Komarneni S. Mullite. Mullite 2006;1-487. Available from: https://doi.org/10.1002/3527607358
- 31. Kaya C, Butler EG, Selcuk A, Boccaccini AR, Lewis MH. Mullite (NextelTM 720) fibre-reinforced mullite matrix composites exhibiting favourable thermomechanical properties. Journal of the European Ceramic Society 2002;22(13):2333-2342. Available from: https://doi.org/10.1016/S0955-2219(01)00531-3
- 32. Wang KT, Cao LY, Huang JF, Fei J. A mullite/SiC oxidation protec-tive coating for carbon/carbon composites. Journal of the European Ceramic Society 2013;33(1):191-198. Available from: https://doi.org/10.1016/j.jeurceramsoc.2012.08.009
- 33. Mucha M, Krzyzak A, Kosicka E, Coy E, Kościński M, Sterzyński T, Sałaciński M. Effect of MWCNTs on Wear Behavior of Epoxy Resin for Aircraft Applications. Materials 2020;13:2696. Available from: https://doi.org/10.3390/ma13122696
- 34. Bellucci S, Balasubramanian C, Micciulla F, Rinaldi G. CNT compo-sites for aerospace applications. J. Exp. Nanosci. 2007:2:193–206. Available from: https://doi.org/10.1080/17458080701376348
- 35. Setua.DK, Mordina B, Srivastava AK, Roy D, Prasad NE. Carbon nanofibers-reinforced polymer nanocomposites as efficient micro-wave absorber. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Elsevier Science: Amsterdam. The Netherlands. 2020;395–430. Available from: https://doi.org/10.1016/B978-0-12-819904-6.00018-9
- 36. Singh NP, Gupta V, Singh AP. Graphene and carbon nanotube rein-forced epoxy nanocomposites: A review. Polymer 2019; 180: 12172 4. Available from:https://doi.org/10.1016/J.POLYMER.2019.121724
- 37. Shen S, Yang L, Wang C, Wei L. Effect of CNT orientation on the mechanical property and fracture mechanism of vertically aligned carbon nanotube/carbon composites. Ceram. Int. 2020;46:4933–4938. Available from: https://doi.org/10.1016/j.ceramint.2019.10.230
- 38. Salazar JMGD, Barrena MI, Morales G. Compression strength and wear resistance of ceramic foams-polymer composites. Mater. Lett. 2006;60:1687–1692. Available from: https://doi.org/10.1016/j.matlet.2005.11.092
- 39. Henager CH, Shin Y, Blum Y, Giannuzzi LA, Kempshall BW, Schwarz. S.M. Coatings and joining for SiC and SiC-composites for nuclear energy systems. J. Nucl. Mater. 2007;367–370:1139-1143. Available from: https://doi.org/10.1016/j.jnucmat.2007.03.189
- 40. DiCarlo JA, Yun HM, Hurst JB. Fracture Mechanisms for SiC Fibers and SiC/SiC Composites Under Stress-Rupture Conditions at High Temperatures. Applied Mathematics and Computation 2004;152: 473–481. Available from: https://doi.org/10.1016/S0096-3003(03)00570-8
- 41. Suresha B, Chandramohan G, Siddaramaiah B, Sampathkumaran P, Seetharamu S. Mechanical and three‐body abrasive wear behaviour of SiC filled glass‐epoxy composites. Polymer Composites 2008; 29(9):1020–1025. Available from: https://doi.org/10.1002/pc.20576
- 42. Rajesh S, Ramnath BV. Analysis of mechanical behavior of glass fiber/Al2O3-SiC reinforced polymer composites. Global Cong. Manuf. Manage. 2014;97:598–606. Available from: https://doi.org/10.1016/j.proeng.2014.12.288
- 43. Product information from Havel Composites Polska Company. Available from: http://www.havel-composites.pl/files/doc/LH_145_zywica_epoksydowa_doc.doc
- 44. ISO 75-2:2013 Plastics — Determination of temperature of deflection under load — Part 2: Plastics and ebonite
- 45. ISO 306:2013 Plastics — Thermoplastic materials — Determination of Vicat softening temperature (VST)
- 46. ASTM D792 — 20 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement
- 47. ISO 48-2:2018 Rubber. vulcanized or thermoplastic — Determination of hardness — Part 2: Hardness between 10 IRHD and 100 IRHD
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73a5545b-21d7-4779-88fe-82f35e595688
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.