PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of rudder and blade pitch on hydrodynamic performance of marine propeller using CFD

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of computational fluid dynamics (CFD) to predict internal and external flows has risen dramatically in the past decade. This research aims to use the commercial software, ANSYS Fluent V.14.5, to illustrate the effects of the rudder and blade pitch on the hydrodynamic performance of the marine propeller by experimenting with propellers and rudders of the M/V Tan Cang Foundation ship, which has designed conditions as follows: diameter of 3.65 m; speed of 200 rpm; average pitch of 2.459 m; boss ratio of 0.1730. Using CFD, the characteristic curves of the marine propeller and some important results showed that the maximum efficiency of the propeller is 0.66 with the open water propeller and 0.689 with the rudder‒propeller system at the advance ratio of 0.6. The obtained outcomes of this research are a significant foundation to calculate and design an innovative kind of propulsion for ships with high performance.
Słowa kluczowe
EN
Rocznik
Tom
Strony
55--63
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • School of Excellent Education, Vietnam Maritime University No. 484 Lach Tray, Kenh Duong, Le Chan, 180000 Hai Phong Vietnam
  • Faculty of Navigation, Vietnam Maritime University No. 484 Lach Tray, Kenh Duong, Le Chan, 180000 Hai Phong Vietnam
  • Department of Mechanical Engineering, Vietnam Maritime University No. 484 Lach Tray, Kenh Duong, Le Chan, 180000 Hai Phong Vietnam
  • School of Excellent Education, Vietnam Maritime University No. 484 Lach Tray, Kenh Duong, Le Chan, 180000 Hai Phong Vietnam
Bibliografia
  • 1. Y. Zhang, X. P. Wu, M. Y. Lai, G. P. Zhou, and J. Zhang, “Feasibility Study of Rans in Predicting Propeller Cavitation in Behind-Hull Conditions”, Polish Marit. Res., vol. 27, no. 4, 2020, DOI: 10.2478/pomr-2020-0063.
  • 2. M. Burak Samsul, “Blade Cup Method for Cavitation Reduction in Marine Propellers”, Polish Marit. Res., vol. 28, no. 2, 2021, DOI: 10.2478/pomr-2021-0021.
  • 3. S. A. Kinnas, Y. Tian, A. Sharma, “Numerical Modeling of a Marine Propeller Undergoing Surge and Heave Motion”, International Journal of Rotating Machinery, pp. 1-8, 2012, doi.org/10.1155/2012/257461.
  • 4. A. Nadery and H. Ghassemi, “Numerical Investigation of the Hydrodynamic Performance of the Propeller behind the Ship with and without Wed”, Polish Marit. Res., vol. 27, no. 4, 2020, DOI: 10.2478/pomr-2020-0065.
  • 5. Y. Zhang, X. P. Wu, M. Y. Lai, G. P. Zhou, and J. Zhang, “Feasibility Study of RANS in Predicting Propeller Cavitation in Behind-Hull Conditions”, Polish Marit. Res., vol. 27, no. 4, 2020, DOI: 10.2478/pomr-2020-0063.
  • 6. H. Nouroozi and H. Zeraatgar, “Propeller Hydrodynamic Characteristics in Oblique Flow by Unsteady Ranse Solver”, Polish Marit. Res., vol. 27, no. 1, 2020, DOI: 10.2478/ pomr-2020-0001.
  • 7. B. Lou and H. Cui, “Fluid-structure interaction vibration experiments and numerical verification of a real marine propeller”, Polish Marit. Res., vol. 28, no. 3, 2021, DOI: 10.2478/pomr-2021-0034.
  • 8. L. Guangnian, Q. Chen, and Y. Liu, “Experimental Study on Dynamic Structure of Propeller Tip Vortex”, Polish Marit. Res., vol. 27, no. 2, 2020, DOI: 10.2478/pomr-2020-0022.
  • 9. S. E. Belhenniche, M. Aounallah, O. Imine, F. Celik, “Effect of geometry configurations on hydrodynamic performance assessment of a marine propeller”, Journal of Shipbuilding, vol. 67, no. 4, pp. 31-48, 2017. doi:10.21278/brod67403.
  • 10. G. Kuiper, “New developments and propeller design”, Journal of Hydrodynamics, vol.7, no. 22, pp. 7-16, 2010. doi:10.1016/S1001-6058(09)60161-X.
  • 11. A. Farkas, N. Degiuli, I. Martić. “Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method”, Int. J. Naval Architecture and Ocean Engineering, vol. 13, pp. 102-114, 2021. https:// doi.org/10.1016/j.ijnaoe.2020.12.005.
  • 12. S. Gaggero, “Design of PBCF energy saving devices using optimization strategies: A step towards a complete viscous design approach”, Ocean Engineering, vol. 159, pp. 517-538, 2018. doi://doi.org/10.1016/j.oceaneng.2018.01.003.
  • 13. V. H. Ngo, T. T. Le, Q. Le, Y. Ikeda, “A study on interaction effects on hydrodynamic performance of a system rudder-propeller by distant gap”, Proceedings of the 12th International Marine Design Conference, Tokyo, Japan, pp. 179-193, 2015.
  • 14. V. H. Ngo, T. T. Le, Y. Ikeda, “A study on improving hydrodynamic performances of a system rudder and propeller by attaching a fix plate on the rudder”, The 8th Asia-Pacific Workshop on Marine Hydrodynamics - APHydro 2016, Hanoi, Vietnam, pp. 277-284, 2016.
  • 15. P. B. John, A. Poul, Hydrodynamics of Ship Propellers Cambridge University Press, 2010. https://doi.org/10.1017/ CBO9780511624254.
  • 16. H. Ira, A. Abbott, E. Von Doenhoff, Theory of Wing Sections, Dover Publications, New York, 1958. Available: https://catalog. library.vanderbilt.edu/permalink/01VAN_INST/13em2a7/ alma991043239434003276.
  • 17. J. S. Carlton, Marine Propellers and Propulsion (Fourth Edition), Butterworth-Heinemann, 2019. https://doi. org/10.1016/C2014-0-01177-X.
  • 18. ANSYS Fluent Theory Guide, 2013.
  • 19. ITTC, Proc. of the 25th International Towing Tank Conference, Fukuoka, Japan, 2008. Available: http://resolver. tudelft.nl/uuid:76a73833-cd0a-4972-9540-b56659b8cdab.
  • 20. ITTC, Proc. of the 26th International Towing Tank Conference, Rio de Janeiro, Brazil, 2011. Available: https:// ittc.info/media/3317/committees.pdf.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73a31590-ec09-4913-a2ab-890d26e8fff7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.