Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents the research results on impact of the method of polycrystalline graphene layers separation from the growth substrate on the obtained carbon material quality. The studies were carried out on graphene sheets obtained by metallurgical method on a liquid metal substrate (HSMG® graphene). The graphene was separated using chemical etching method or the electrochemical delamination method, by separating by means of electrolysis. During electrolysis, hydrogen is emitted on a graphene-covered of cathode (metal growth substrate) as a result of the voltage applied. The graphene layer breaks away from metallic substrate by gas accumulation between them. The results from these separation processes were evaluated by means of different tools, such as SEM, TEM and AFM microscopy as well as Raman Spectroscopy. In summary, the majority of analyses indicate that the graphene obtained as a result of hydrogen delamination possesses higher purity, smaller size and number of defects, its surface is smooth and less developed after the transfer process to the target substrate.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1321--1326
Opis fizyczny
Bibliogr. 27 poz., fot., rys.
Twórcy
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Lodz University of Technology, Institute of Materials Science and Engineering, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
- Nanomaterial Structural Research Laboratory, Bionanopark Sp. z o.o. [Ltd.]
Bibliografia
- [1] G. N. Dash, R. Pattanaik, R. Behera, J. Electron Devices Soc. 2 (5), 77-104 (2014).
- [2] E. Pop, V. Varshney, A. K. Roy, MRS Bull. 37, 1273-1281 (2012).
- [3] L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, Nature 467, 305-308 (2010).
- [4] F. Zhang, J. Tang, N. Shinya, L. C. Qin, Chem. Phys. Lett. 584, 124-129 (2013).
- [5] Z. Wang, A. Wu, L. C. Ciacchi, G. Wei, Nanomaterials 8 (2), 65 (2018).
- [6] A. K. Geim, K. S. Novoselov, Nature Materials 6, 183-191 (2007).
- [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666-669 (2004).
- [8] C. Reeves, Graphene: Characterization after mechanical exfoliation, Senior, Physics, College of William and Mary (2010).
- [9] Y. H. Wu, T. Yu, Z. X. Shen, Journal of Applied Physics 108, 071301 (2010).
- [10] G. R. Yazdi, T. Iakimov, R. Yakimova, Crystals 6 (5), 53 (2016).
- [11] M. Aliofkhazraei, N. Ali, W. I. Milne, et al. Graphene science handbook. Fabricaion methods. CRC Press (2016).
- [12] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromps, J. B. Hannon, E. M. Vogel, L. Colombo, R. S. Ruoff, J. Am. Chem. Soc. 133 (9), 2816-2819 (2011).
- [13] A. Olsson, Graphene Growth through Chemical Vapor Deposition - Optimization of Growth and Transfer Parameters (2017).
- [14] X. Li, W. Cai, L. Colombo, R. S. Ruoff, Nano Letters 9, 4268-4272 (2009).
- [15] P. Kula, R. Pietrasik, K. Dybowski, R. Atraszkiewicz, Ł. Kaczmarek, W. Szymański, P. Niedzielski, D. Nowak, W. Modrzyk, Nanotech 1, 210-212 (2013).
- [16] P. Kula, R. Pietrasik, K. Dybowski, R. Atraszkiewicz, W. Szymański, Ł. Kołodziejczyk, P. Niedzielski, D. Nowak, Appl. Mech. Mater. 510, 8-12 (2014).
- [17] Y. Ren, C. Zhu, W. Cai, H. Li, Y. Hao, Y. Wu, S. Chen, Q. Wu, R. D. Piner, S. Ruoof, Nano 7 (1), 1150001 (2012).
- [18] J. W. Suk, A. Kitt, C. W. Magnusson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff, ACS Nano 5 (9), 6916-6924 (2011).
- [19] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Bao, J. Lu, K. P. Loh, ACS Nano 5 (12), 9927-9933 (2011).
- [20] T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt, W. Strupinski, J. Phys. Chem. C 117 (40), 20833-20837 (2013).
- [21] C. T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, B. Özyilmaz, Small 11 (2), 189-194 (2015).
- [22] A. I. Istrate, M. Veca, F. Nastase, A. Baracu, R. Gavrila, F. Comanescu, 2016 International Semiconductor Conference (CAS) (2016), DOI: 10.1109/SMICND.2016.7783071.
- [23] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, Teng Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, H. M. Cheng, Nat. Commun. 3 (2012), DOI: 10.1038/ncomms1702.
- [24] C. J. Lockhart de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson, K.B.K. Teo, A. Yurgens, Appl. Phys. Lett. 102, 022101 (2013).
- [25] K. Verguts, J. Coroa, C. Huyghebaert, S. De Gendt, S. Brems, Nanoscale 10 (12), 5515-5521 (2018).
- [26] M. Wall, Advanced Materials and Processes 170 (4), (2012).
- [27] L. G. Cançado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M.V.O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Lett. 11 (8), 3190-3196 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-739c553a-64f4-4726-abae-b1f1a8e4d9b2