PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Human-planted alder trees as a protection against debris flows (a dendrochronological study from the Moxi Basin, Southwestern China)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Large debris flows have destroyed the infrastructure and caused the death of people living in the Moxi Basin (Sichuan Province, Southwestern China). Inhabitants of the Moxi Basin live on the flat surfaces of debris-flow fans, which are also attractive for farming. During the monsoon season debris flows are being formed above the fans. Debris flows can destroy the houses of any people liv-ing within the fan surfaces. In order to prevent the adverse effects of flows, people plant alder trees (Alnus nepalensis) at the mouths of debris flow gullies running above debris flow fans. Alders are able to capture the debris transported during flow events. Trees are well adapted to surviving in con-ditions of environmental stress connected with abrupt transport and deposition of sediment from de-bris flows. Numerous wounds, tilting and bending of alder trees caused by debris flows only very rarely cause the death of trees. By dating scars and dating the time of alder tilting (through the analy-sis of annual rings), we have determined the frequency of debris flows occurring at the mouth of the Daozhao valley. In 1980-2012 within the studied debris-flow fan and the Daozhao gully, 2 large de-bris flow events occurred (1996, 2005) and some smaller events were probably recorded every 2-3 years.
Wydawca
Czasopismo
Rocznik
Strony
208--216
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
  • Department of Reconstructing Environmental Change, Faculty of Earth Sciences, University of Silesia, ul. Będzińska 60, 41-200 Sosnowiec, Poland
  • Chengdu Centre of China Geological Survey, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, No. 2 of N-3-Section of First Ring Road, Chengdu, China
autor
  • Chengdu Centre of China Geological Survey, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, No. 2 of N-3-Section of First Ring Road, Chengdu, China
autor
  • Institute of Geography and Regional Development, University of Wrocław, pl. Uniwersytecki 1, 50-137 Wrocław, Poland
  • Chengdu Centre of China Geological Survey, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, No. 2 of N-3-Section of First Ring Road, Chengdu, China
autor
  • Department of Reconstructing Environmental Change, Faculty of Earth Sciences, University of Silesia, ul. Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Department of Reconstructing Environmental Change, Faculty of Earth Sciences, University of Silesia, ul. Będzińska 60, 41-200 Sosnowiec, Poland
  • Department of Reconstructing Environmental Change, Faculty of Earth Sciences, University of Silesia, ul. Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Bardou E and Delaloye R, 2004. Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments. Natu-ral Hazards and Earth System Sciences 4(4): 519-530, DOI 10.5194/nhess-4-519-2004.
  • 2. Baumann F and Kaiser KF, 1999. The Multetta debris fan, eastern Swiss Alps: a 500-year debris flow chronology. Arctic, Antarctic, and Alpine Research 31(2): 128-134, DOI 10.2307/1552601.
  • 3. Bollschweiler M, Stoffel M and Schlaeppy R, 2011. Debris-flood reconstruction in a prealpine catchment in Switzerland based on tree-ring analysis of conifers and broadleaved trees. Geografiska Annaler: Series A, Physical Geography 93(1): 1-15, DOI 10.1111/j.1468-0459.2011.00001.x.
  • 4. Berti M and Simoni A, 2007. Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90(1-2): 144-161, DOI 10.1016/j.geomorph.2007.01.014.
  • 5. Caine N, 1980. The rainfall intensity – duration control of shallow landslides and debris lows. Geografiska Annaler 22A: 23-27.
  • 6. Chiarle M, Ianotti S, Mortara G and Deline P, 2007. Recent debris flow occurrences ssociated with glaciers in the Alps. Global and Planetary Change 56(1-2): 123-136, DOI 10.1016/j.gloplacha.2006.07.003.
  • 7. Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, Zhang X, Tang W, Wang E and Chen L, 2004. Surface uplift, tec-tonics, and erosion of eastern Tibet from large-scale drainage pat-terns. Tectonics 23(1): TC1020, DOI 10.1029/2002TC001397.
  • 8. Conway SJ, Decaulne A, Balme MR, Murray JB and Towner MC, 2010. A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland. Geomorphology 114(4): 556-572, DOI 10.1016/j.geomorph.2009.08.015.
  • 9. Dai S, 2002. Forecast on trend of geological hazard control in Sichuan Province. The Chinese Journal of Geological Hazard and Control 13: 100-101.
  • 10. Decaulne A, Sæmundsson B and Petursson A, 2005. Debris flow trig-gered by rapid nowmelt: a case study in the Gleidarhjallli area, northwestern Iceland. Geographical Analysis A 87A: 487-500.
  • 11. Fielding EJ, 1996. Tibet uplift and erosion. Tectonophysics 260(1-3): 55-84, DOI 10.1016/0040-1951(96)00076-5.
  • 12. Fiorillo F and Wilson RC, 2004. Rainfall induced debris flows in pyro-clastic deposits, Campania (southern Italy). Engineering Geology 75(3-4): 263-289, DOI 10.1016/j.enggeo.2004.06.014.
  • 13. Hrádek M and Malik I, 2007. Dendrochronological records of the floodplain morphology transformation of Desná River Valley in the last 150 years, the Hrubý Jeseník Mts. (Czech Republic). Mo-ravian Geographical Reports 15(1): 2-10.
  • 14. Ishikawa Y, Kawakami S, Morimoto Ch and Mizuhara K, 2003. Sup-pression of Derbis movement by forests and damage to forests by debris deposition. Journal of Forest Research 8(1): 37-47, DOI 10.1007/s103100300004.
  • 15. Kotarba A, 1992. High-energy geomorphic events in the polish Tatra Mountains. Geographical Analysis 74A: 121-131.
  • 16. Lancaster S and Hayes S, 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research 39(6): 1168, DOI 10.1029/2001WR001227.
  • 17. Leber D, Holawe F and Häusler H, 1995. Climatic classification of the Tibet Autonomous Region using multivariate statistical methods. GeoJournal 37(4): 451-473, DOI 10.1007/BF00806934.
  • 18. Li Z, He Y, Yang X, Theakstone WH, Jia W, Pu T, Liu Q, He X, Song B, Zhang N, Wang S and Du J, 2010a. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quaternary International 218(1-2): 166-175, DOI 10.1016/j.quaint.2008.09.005.
  • 19. Li Z, He Y, He X, Pu T, Jia W, He X, Pang H, Zhang N, Liu Q, Wang S, Zhu G, Wang S, Chang L, Du J and Xin H, 2010b. Changes of climate, glaciers and runoff in China’s monsoonal temperate glaci-er region during the last several decades. Quaternary International 218(1-2): 13-28, DOI 10.1016/j.quaint.2009.05.010.
  • 20. Lin C, Shie C, Yuan B, Shieh Y and Lee S, 2003. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: ex-ample from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology 71(1-2): 49-61, DOI 10.1016/S0013-7952(03)00125-X.
  • 21. Lopez-Saez J, Corona C, Stoffel M, Gotteland A, Berger F and Liebault F, 2011. Debris flow activity in abandoned channels of the Mani-val torrent reconstructed with LiDAR and tree-ring data. Natural Hazards and Earth System Sciences 11(5): 1247-1257, DOI 10.5194/nhess-11-1247-2011.
  • 22. McVean DN, 1953. Alnus glutinosa (L.), (A. rotundifolia Stokes). Journal of Ecology 41: 447-465.
  • 23. Malik I, 2004. The influence of riparian trees on meandering floodplain and riverbed transformation - The case of the Mała Panew River (Opole Plain). Przegląd Geograficzny 76: 345-360, (in Polish). Malik I, 2006. Contribution to understanding the historical evolution of meandering rivers using dendrochronological methods: example of the Mała Panew River in southern Poland. Earth Surface Process-es and Landforms 31(10): 1227-1245, DOI 10.1002/esp.1331.
  • 24. Malik I and Matyja M, 2008. Bank erosion history on a mountain stream determined by means of anatomical changes in exposed tree roots over the last 100 years (Bílá Opava River – Czech Re-public). Geomorphology 98(1-2): 126-142, DOI 10.1016/j.geomorph.2007.02.030.
  • 25. Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid - mountain forest zone (east-ern Sudetes - central Europe). Geochronometria 34: 57-66, DOI 10.2478/v10003-009-0011-7.
  • 26. Malik I and Wistuba M, 2012. Dendrochronological methods for recon-structing mass movements — An example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3): 180-196, DOI 10.2478/s13386-012-0005-5.
  • 27. Matyja M, 2007. The Significance of Trees and Coarse Woody Debris in Shaping the Debris Flow Accumulation Zone (North Slope of the Babia Góra Massif, Poland). Geographia Polonica 80: 83-101.
  • 28. May ChL, 2002. Debris flow through different forest age classes in the Central Oregon Coast Range. Journal of the American Water Re-sources Association 38(4): 1097-1113, DOI 10.1111/j.1752-1688.2002.tb05549.x.
  • 29. Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P and Šilhán K, 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124(3-4): 200-214, DOI 10.1016/j.geomorph.2010.09.024.
  • 30. Miller and Burnett, 2008. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA. Geomorphology 94(1-2): 184-205, DOI 10.1016/j.geomorph.2007.05.009.
  • 31. Procter E, Bollschweiler M, Stoffel M and Neumann M, 2011. A regional reconstruction of debris-flow activity in the Northern Cal-careous Alps, Austria. Geomorphology 132(1-2): 41-50, DOI 10.1016/j.geomorph.2011.04.035.
  • 32. Reid ME, Nielsen HP and Dreiss SJ, 1988. Hydrologic factors trigger-ing a shallow hillslope failure. Bulletin of the International Asso-ciation of Engineering Geology 25: 349-361.
  • 33. Stoffel MI, Conus D, Grichting M, Raetzo H, Gärtner H and Monbaron M, 2005. 400 Years of Debris-Flow Activity and Triggering Weather Conditions: Ritigraben, Valais, Switzerland. Antarctic and Alpine Research 37: 387-395, DOI 10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2.
  • 34. Stoffel M, 2010. Magnitude–frequency relationships of debris flows — A case study based on field surveys and tree-ring records. Geo-morphology 116(1-2): 67-76, DOI 10.1016/j.geomorph.2009.10.009.
  • 35. Šilhán K and Pánek T, 2010. Fossil and recent debris flows in medium–high mountains (Moravskoslezské Beskydy Mts, Czech Republic). Geomorphology 124(3-4): 238-249, DOI 10.1016/j.geomorph.2010.03.026.
  • 36. Šilhán K, 2012. Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezské Beskydy Mts (Czech Republic) using dendrogeomorphic methods. Geochronometria 39(2): 122-132, DOI 10.2478/s13386-012-0002-8.
  • 37. Šilhán K, Pánek T and Hrádecký J, 2012. Tree-ring analysis in the reconstruction of slope instabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine). Geomorphol-ogy 173-174: 174-184, DOI 10.1016/j.geomorph.2012.06.010.
  • 38. Su Z and Shi Y, 2002. Response of monsoonal temperate Glacier to global Warming Since the Little Ice Age. Quaternary International 97-98: 123-131, DOI 10.1016/S1040-6182(02)00057-5.
  • 39. Tang C, Zhu J, Qi X and Ding J, 2011. Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China. Engineering Geology 122(1-2): 22-33, DOI 10.1016/j.enggeo.2011.03.013.
  • 40. Tang C, Van Asch TWJ, Chang M, Chen GQ, Zhao XH and Huang XC, 2012a. Catastrophic debris flows on 13 August 2010 in the Qing-ping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 139-140: 559-576, DOI 10.1016/j.geomorph.2011.12.021.
  • 41. Tang C, Zhu J, Chang M, Ding J and Qi X, 2012b. An empirical–statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area. Quaternary International 250: 63-73, DOI 10.1016/j.quaint.2010.11.020.
  • 42. Tie Y, 2013. Prediction of the run-out distance of the debris flow based on the velocity attenuation coefficient. Natural Hazards 65(3): 1589-1601, DOI 10.1007/s11069-012-0430-z.
  • 43. Yan Y and Yue C, 2004. Discussion on the characteristics and counter-measures for the geological hazard in Sichuan Province. The Chinese Journal of Geological Hazard and Control 15: 123–127, (in Chinese).
  • 44. Zielonka T, Ciapała S, Malina P and Piątek G, 2009. Coarse woody derbis in mountain streams and their influence on geomorphology of channels in the Tatra Mts. Landform Analysis 10: 134-139.
  • 45. Zielonka T and Dubaj N, 2010. A tree-ring reconstruction of geomor-phologic disturbances in cliff forests in the Tatra Mts. Landform Analysis 11: 43-48.
  • 46. Zielski A and Krąpiec M, 2004. Dendrochronologia. PWN, Warszawa. (in Polish).
Uwagi
EN
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-739a8aeb-bdd5-4dae-a6d8-d183a72aae37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.