PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy efficiency modernizations at the industrial plant: a case study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present era of continually increasing energy demand, Europe faces many challenges, such as high and unstable energy prices, growing global energy demand, increasing threat of climate change, sluggish progress within energy efficiency and issues related to increasing demand for the use of renewable energy sources. It is desirable to seek opportunities to use energy consumed most reasonably, thus ensuring continuous improvement of energy efficiency in the industry. The scope of the research includes reviewing studies in this matter and analysing the most beneficial solutions for the plant. The work aims to assess possible undertakings to modernise the energy management of an industrial plant on the example of Bulten Poland S.A. rationally and profitably for the plant. The work contains an analysis of the profitability of the potentially most beneficial solutions in terms of improving the energy efficiency of the plant. Mentioned in the article solutions, aiming increasing energy efficiency, helped become the plant independent within heating up facilities. Total heat recovery potential in amount of 18 965 GJ is motivation for further activities. This is a great opportunity to reduce significantly carbon footprint (replacing lightening into LED technology reduced CO2 by 206.3 Mg/year) and be more competitive on the market by reducing costs of product.
Rocznik
Strony
183--193
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Bulten Poland S.A., ul. Bukietowa 60, 43-300 Bielsko-Biala, Poland
  • Department of Thermal Technology, Silesian University of Technology, ul. S. Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
  • [1] The official portal of the European Union. https://europa.eu/european-union/topics/energy_en [online access 24.09.2018].
  • [2] Website of the European Parliament. https://www.europarl.europa.eu/factsheets/en/sheet/68/ energy-policy-general-principles [online access 24.09.2018].
  • [3] Baleynaud JM, Huang F, Zheng J, Baleynaud JM, Lu J. Heat recovery potentials and technologies in industrial zones. J Energy Inst. 2016;90:951-61. DOI: 10.1016/j.joei.2016.07.012.
  • [4] Gielen D, Bennaceur K, Kerr T, Tam C, Tanaka K, Taylor M, et al. IEA, Tracking Industrial Energy Efficiency and CO2 Emissions. https://www.researchgate.net/publication/279804486_IEA_Tracking_Industrial_Energy_Efficiency_and_CO2_Emissions [online access 24.09.2018].
  • [5] Independent Statistics & Analysis. U.S. Energy Information Administration. 2017. https://www.eia.gov/todayinenergy/detail.php?id=32912 [online access 24.09.2018]
  • [6] Van de Bor D, Ferreira CI, Kiss AA. Low grade waste heat recovery using heat pumps and power cycles. Energy. 2015;89:864-73. DOI: 10.1016/j.energy.2015.06.030.
  • [7] Wang T, Luan W, Wang W, Tu ST. Waste heat recovery through plate heat exchanger based thermoelectric generator system. Appl Energy. 2014;136:860-5. DOI: 10.1016/j.apenergy.2014.07.083
  • [8] Energy Recovery Heat Pipes. 5 Advantages of using Heat Pipes for Air-To-Air Energy Recovery. http://www.dac-hvac.com/energy-recovery-heat-pipes-5-advantages-of-using-heat-pipes-for-air-to-airenergy-recovery/ [online access 24.09.2018].
  • [9] Yodrak L, Rittidech S, Poomsa N, Meena P. Waste heat recovery by heat pipe air-preheater to energy thrift from the furnace in a hot forging process. Am J Appl Sci. 2010;7:675-81. DOI: 10.3844/ajassp.2010.675.681.
  • [10] Shabgard H, Allen MJ, Sharifi N, Benn SP, Faghri A, Bergman TL. Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art. Int J Heat Mass Transfer. 2015;89:138-58. DOI: 10.1016/j.ijheatmasstransfer.2015.05.020.
  • [11] Thu K, Yanagi H, Saha BB, Ng KC. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype. Int J Heat Mass Transfer. 2013;65:662-9. DOI: 10.1016/j.ijheatmasstransfer.2013.06.053.
  • [12] Peris B, Navarro-Esbrí J, Moles F, Mota-Babiloni A. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy. 2015;85:534-42. DOI: 10.1016/j.energy.2015.03.065.
  • [13] Khatita MA, Tamer SA, Ashour FH, Ismail I. Power generation using waste heat recovery by organic Rankine cycle in oil and gas sector in Egypt: a case study. Energy. 2014;64:462-72. DOI: 10.1016/j.energy.2013.11.011.
  • [14] Gao P, Jiang L, Wang LW, Wang RZ, Song FP. Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis. Appl Therm Eng. 2015;75:880-8. DOI: 10.1016/j.applthermaleng.2014.10.044.
  • [15] Stijepovic MZ, Papadopoulos AI, Linke P, Grujic AS, Seferlis P. An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes. Energy. 2014;69:285-98. DOI: 10.1016/ j.energy.2014.03.006.
  • [16] Stijepovic M, Linke P, Papadopoulos A, Grujic A. On the role of working fluid properties in Organic Rankine Cycle performance. Appl Therm Eng. 2012;36:406-13. DOI: 10.1016/j.applthermaleng.2011.10.057.
  • [17] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for low-temperature organic Rankine cycles. Energy. 2007;32:1210-21. DOI: 10.1016/j.energy.2006.07.001.
  • [18] Cabeza LF, Oró E. Thermal energy storage for renewable heating and cooling systems. Renew Heating Cooling. Technologies Applications. 2016:139-79. DOI: 10.1016/B978-1-78242-213-6.00007-2
  • [19] Chowdhury Y, Chowdhury H, Barua P, Salam B. Waste Heat Thermal Storage. A Way to Renewable Energy. Int Conf Mechanical, Industrial Materials Eng. 2017 (ICMIME2017). Rajshahi University of Engineering & Technology. https://www.researchgate.net/publication/325415854_Waste_Heat_Thermal_Storage_A_Way_to_Renewable_Energy [online access 24.09.2018].
  • [20] Sarbu I, Sebarchievici CA. Comprehensive review of thermal energy storage. Sustainability. 2018;10:191-223. DOI: 10.3390/su10010191.
  • [21] Ayappan S, Mayilsamy K, Sreenarayanan VV. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transfer. 2016;52:459-66. DOI: 10.1007/s00231-015-1568-5.
  • [22] Mascarenhas JS, Chowdhury H, Thirugnanasambandam M, Chowdhury T, Saidur R. Energy, exergy, sustainability, and emission analysis of industrial air compressors. J Cleaner Prod. 2019;231:183-95. DOI: 10.1016/j.jclepro.2019.05.158.
  • [23] Broniszewski M, Werle S. The study on the heat recovery from air compressors. 17th Int Conf Heat Transfer Renew Sources Energy (HTRSE-2018). E3S Web of Conferences. DOI: 10.1051/e3sconf/20187003001.
  • [24] Raj TN, Iniyan S, Goic R. A review of renewable energy based cogeneration technologies. Renew Sust Energy Rev. 2011;15:3640-8. DOI: 10.1016/j.rser.2011.06.003.
  • [25] Broniszewski M, Werle S. CO2 reduction methods and evaluation of proposed energy efficiency improvements in Poland's large industrial plant. Energy. 2020. DOI: 10.1016/j.energy.2020.117704.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73941e6e-69d9-470b-8b70-a334a84753d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.