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ABSTRACT. The most significant relativistic effects (the geodetic precession and the 
geodetic nutation, which consist of the effect of the geodetic rotation) in the rotation of 
Jupiter's inner satellites were investigated in this research. The calculations of the most 
essential secular and periodic terms of the geodetic rotation were carried out by the method 
for studying any bodies of the solar system with long-time ephemeris. As a result, for these 
Jupiter’s satellites, these terms of their geodetic rotation were first determined in the rotational 
elements with respect to the International Celestial Reference Frame (ICRF) equator and the 
equinox of the J2000.0 and in the Euler angles relative to their proper coordinate systems. The 
study shows that in the solar system there are objects with significant geodetic rotation, due 
primarily to their proximity to the central body, and not to its mass. 
Keywords: relativistic effects, geodetic (relativistic) rotation, inner Jupiter satellites, solar 
system bodies 

1. INTRODUCTION  
The most significant relativistic effects in the rotation of celestial bodies are the effects of the 
geodetic precession and the geodetic nutation, together making up the geodetic rotation. The 
geodetic precession effect, first considered by Willem de Sitter in 1916 (De Sitter, 1916), is a 
secular change in the direction of the axis of rotation of a celestial body as a result of a 
parallel transfer of the angular momentum vector of the body along its orbit in curved space-
time. The geodetic nutation effect, first introduced by Toshio Fukushima in 1991 (Fukushima, 
1991), is a periodic change in the direction of the axis of its rotation arising for the same 
reason. 
In 2015, Francesco Biscani and Sante Carloni (Biscani and Carloni, 2015), considering a 
simplified model of the rotation of the Jupiter’s satellites: Io (J1) and Metis (J16). They 
assumed that the satellites are homogeneous spheres, and reference planes were chosen 
perpendicular to the planet’s rotation axis. As the result, is obtained the theoretical value of 
their geodetic precession. The two satellites are considered separately, and thus assumed not 
to interact with each other. 
In our previous investigations (Melnikov et al., 2020), the dynamics of rotation of small 
satellites of the planets of the solar system were studied. Satellites with well-established 
rotation parameters (Archinal et al., 2018) (Jupiter: Amalthea (J5); Saturn: Iapetus (S8), 
Phoebe (S9), Prometheus (S16) and Pandora (S17); Uranus: Miranda (U5)) were considered. 
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It was found that the value of the geodetic precession of Amalthea, which is one from the 
closest satellites of Jupiter, is 50 times greater than the value of the geodetic precession of 
Mercury. Recall that Mercury has the largest value of geodetic precession among the planets 
of the solar system (Pashkevich, 2016), as the planet closest to the Sun (the most massive 
body of the solar system). Thus, a more detailed study of the relativistic effects in the rotation 
of the nearest satellites of Jupiter of the Amalthea group becomes relevant and interesting. 
The purpose of this study is to determine the most significant secular and periodic terms of 
the geodetic rotation of the inner satellites of Jupiter (nearest Jupiter’s satellites of the 
Amalthea group): Thebe (J14), Amalthea (J5), Adrastea (J15), and Metis (J16). Calculations 
will be made using the method for studying the geodetic rotation of any bodies of the solar 
system (Pashkevich, 2016) with long-time ephemeris. 

2. MATHEMATICAL MODEL OF THE PROBLEM 
The effects of the geodetic rotation of the inner satellites of Jupiter are studied with respect to 
their proper coordinate systems (Archinal et al., 2018). The positions, velocities, and orbital 
elements for Thebe, Amalthea, Adrastea, and Metis are taken from the Horizons On-Line 
Ephemeris System (Giorgini et al., 1996) at all periods of the ephemeris existence (Table 1). 
The positions and velocities for the Sun, the Moon, Pluto, and the major planets are calculated 
using the fundamental ephemeris JPL DE431/LE431 (Folkner et al., 2014). 

Table 1. The parameters of the studies of geodetic rotation 

Satellite The time span (years) Spacing 

Metis 400   (from AD1799 19 December to AD2200 13 January) 42 minutes 

Adrastea 400   (from AD1799 19 December to AD2200 13 January) 42 minutes 

Amalthea 1000 (from AD1600 07 February   to AD2599 06 December) 60 minutes 

Thebe 400   (from AD1799 19 December to AD2200 13 January) 90 minutes 

The geodetic rotation of the inner satellites of Jupiter is calculated in the rotational elements 
0 0(α ,  δ ,  W)  (Archinal et al., 2018) relative to the International Celestial Reference Frame 

(ICRF) equator (Ma et al., 1998) and the equinox of the J2000.0 and in the Euler angles 
(ψ,  θ,  φ) (Pashkevich and Vershkov, 2019) with respect to their proper coordinate systems 
(Archinal et al., 2018). The most essential relativistic component of the rotational motion of a 
body i around the proper center of mass is defined by the angular velocity vector of this body 
geodetic rotation (Brumberg, 1972; Eroshkin and Pashkevich, 2007, 2009): 

 ( )32

1 3 2 .
2

j
i i j i j

j i i j

Gm
R R R R

c R R
σ

≠

 = − × − 
 −

∑    (1) 

Here c  is the velocity of light; G  is the gravitational constant; jm  is the mass of a body j ; 

, , ,i i j jR R R R   are the vectors of the barycentric position and velocity of the bodies i and j . 
The symbol ×  means a vector product; the subscripts i  for the investigated body and j  for 
perturbing bodies are taken from the set bodies: Thebe, Amalthea, Adrastea, Metis, the Moon, 
the major planets, Pluto, and the Sun. Further in the formulas the body index i will be omitted. 



 

120 
 

The geodetic rotation velocities values are determined over various time spans with different 
time spacing (Table 1) for each investigated inner satellites of Jupiter.  
The expressions of the geodetic rotation velocities values for a body are determined in the 
Euler angles (Pashkevich and Vershkov, 2019) as follows: 
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Here ψ, θ, and φ are the Euler angles (ψ  is the longitude of the descending node of epoch 
J2000 of the body equator, θ  is the inclination of the body equator to the fixed ecliptic J2000, 
and ϕ  is the proper rotation angle of the body between the descending node of epoch J2000 
and the principal axis of the minimum moment of inertia [point В, Figure 1]); the dot denotes 
differentiation with respect to time; rψ ψ ψ∆ = −   , rθ θ θ∆ = −   , and rϕ ϕ ϕ∆ = −    are the 
differences between the relativistic and Newtonian components of the velocities geodetic 
rotation of the solar system body; 1 2 3, ,  and σ σ σ  are reduced (Pashkevich, 2016) components 
of the angular velocity vector (1) of the geodetic rotation of the inner satellites of Jupiter from 
the geocentric reference frame epoch J2000 to the body-centric reference frames, given by 
Archinal et al. (2018). 

 
Figure 1. Euler angles used to define the direction of the angular velocity vector of the geodetic 

rotation for a body of the solar system  

Figure 2 shows that the configuration of the location of the rotational elements 0 0(α ,  δ ,  W)  
of the solar system bodies is similar to the configuration for the Euler angles (ψ,  θ,  φ)  of 
these bodies (see Figure 1). Here 0α  is the right ascension of the north pole of rotation of the 
body; 0δ  is the declination of the north pole of rotation of the body; W = QB is the angular 
distance of the meridian zero of the body measured along the equator of the body from a fixed 
Earth's equator J2000.0 epoch. From expressions (2) were obtained the expressions for the 
geodetic rotation velocity values of the inner satellites of Jupiter in the rotational elements 
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0 0(α ,  δ ,  W)  by replacing the Euler angles with the corresponding rotational elements of the 
satellites 0 0(ψ 270  α ,  θ 90  δ ,  φ 180  W)→ + → − → +   : 
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where 0 0r 0α α α , ∆ = −   0 0r 0δ δ δ , ∆ = −   and rW W W ∆ = −    are the differences of the 
relativistic and Newtonian angles of rotation of the investigated body, respectively; dot means 
time differentiation. 

 
Figure 2. The rotational elements 0 0(α ,  δ ,  W)  used to define the direction of the angular velocity 

vector of the geodetic rotation for a body of the solar system  

The most significant components of the geodetic rotation velocity of the studied body were 
found by the least-squares method and spectral analysis (Pashkevich, 2016). As a result, the 
values of the coefficients of the main secular and periodic terms of the body geodetic rotation 
velocities were calculated. The expressions for the secular and periodic terms of the geodetic 
rotation velocity of the body are presented in the following form: 

 1
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where nx∆ are the coefficients of the secular terms; Slkx∆ , Clkx∆  are the coefficients of the 

periodic terms; 0 0=ψ, θ, φ, α , δ , W;x      0 1,l lν ν  are phases and frequencies of the body under 
study, which are combinations of the corresponding Delaunay arguments (Smart, 1953) and 
the mean longitudes of the perturbing bodies; the summation index l is the number of added 
periodic terms and its value changes for each body under study; t  is the time in the Julian 
days; N and M are approximation parameters.  
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Figure 3 shows the calculated values of the velocities of change of the geodetic rotation of the 
inner satellites of Jupiter in the Euler angles. The yellow line in the graphs shows a secular 
trend. 

 

Figure 3. The values of the velocities of the change in geodetic rotations for the inner satellites of 
Jupiter in the Euler angles 

After analytical integration of equation (4)  dt,x x∆ = ∆∫ 
 
the expressions of the secular and 

periodic terms of the body geodetic rotation can be obtained: 
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Slkx∆ and cosine Clkx∆ terms are calculated using the “Cascade” method (Pashkevich, 2016). 

As a result of the least-squares calculations, the values of the approximation parameters for 
providing the best approximation of the parameters of geodetic rotation were obtained: N = 2 
and M = 1.  

3. RESULTS  
In this research, the values of the secular (Tables 2 and 4) and periodic (Tables 3 and 4) terms 
of the geodetic rotation for the inner Jupiter’s satellites were first determined in the rotational 
elements 0 0(α ,  δ ,  W)  with respect to the ICRF equator (Tables 4–7) and the equinox of the 
J2000.0 and in the Euler angles (ψ,  θ,  φ)  relative to their proper coordinate systems (Tables 
2 and 3). For ease of use, in Tables 2 and 3, expression (5) is presented in the form: 
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Table 2. The secular terms of geodetic rotation for the inner Jupiter’s satellites in the Euler angles 

 Metis (J16) 
a = 128 000 km 

Adrastea (J15) 
a = 129 000 km 

Amalthea (J5) 
a = 181 400 km 

Thebe (J14) 
a = 221 900 km 

 Δψ1 (") Δψ1 (") Δψ1 (") Δψ1 (") 
t – 52 957.2516 – 51 932.8456 – 22 118.2274 – 13 372.5500 

t2 – 20.0929 – 19.7509 – 0.7460 – 2.8287 
 Δθ1 (") Δθ1 (") Δθ1 (") Δθ1 (") 

t – 0.4232 – 0.4151 – 0.0923 – 2.4703 
t2 – 3.9838 – 3.9067 4.7351 37.7619 

 Δφ1 (") Δφ1 (") Δφ1 (") Δφ1 (") 
t 26 460.9380 25 949.0709 11 055.1784 6 693.8317 

t2 19.8858 19.5347 0.5755 2.8902 

In Tables 2 and 3: t is Dynamical Barycentric Time (TDB), which is measured in thousand 
Julian years (tjy) (of 365 250 days) from the epoch J2000.0, and a is the semi-major axis of 
the satellite orbit.  
As can be seen from Table 2, the calculated value of the geodetic precession of Metis 
Δψ1 = -1º.4710348 per century, which is in good agreement with the theoretical value of this 
value -1º.473 per century obtained in (Biscani and Carloni, 2015) for a simplified model of 
satellite rotation. 
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Table 3. The periodic terms of geodetic rotation for the inner Jupiter’s satellites in the Euler angles 

Body Angle Period Argument Coefficient of 
sin(Argument) (μas) 

Coefficient of 
cos(Argument) (μas) 

 
Metis  
(J16) 

e = 0.0012 
 

Δψ2 
7.0752 h 
7.0742 h 

λ516 – λ5 
λ516 + λ5 

– 491.02         +66.84t 
36.97         +70.96t 

406.71            +77.88t 
326.50              –3.60t 

Δθ2 
7.0752 h 
7.0742 h 

λ516 – λ5 
λ516 + λ5 

–12.11           –0.68t 
12.68           –0.25t 

– 4.19               +1.84t 
– 1.43               –2.68t 

Δφ2 
7.0752 h 
7.0742 h 

λ516 – λ5 
λ516 + λ5 

191.16         –11.21t 
–36.99         –70.18t 

– 46.80             –30.55t 
–326.96              +3.90t 

 
Adrastea 

(J15) 
e = 0.0018 

 

Δψ2 
7.1587 h 
7.1578 h 

λ515 – λ5 
λ515 + λ5 

–619.25       +144.03t 
–216.77       –332.46t 

–96.70          –880.88t 
240.02          –294.02t 

Δθ2 
7.1587 h 
7.1578 h 

λ515 – λ5 
λ515 + λ5 

– 4.80         +16.84t 
9.32         –11.54t 

–11.64              –7.06t 
8.41              +2.88t 

Δφ2 
7.1587 h 
7.1578 h 

λ515 – λ5 
λ515 + λ5 

159.02       –163.79t 
217.02       +333.29t 

110.20          +221.18t 
–240.32          +295.24t 

 
Amalthea 

(J5) 
e = 0.0032 

Δψ2 

143.7475 d    
71.8737 d 
11.9577 h  
11.9549 h 

ΩL55 
2Ω L55 
λ55 – λ5 
λ55 + λ5 

14 788.07   –20 766.41t 
–705.83     +8 528.53t 

428.18        –518.50t 
215.16        +138.37t 

–8 065.69   –240 278.07t 
1 110.30     +17 772.11t 

221.47          +672.87t 
–118.79          +403.48t 

Δθ2 

143.7475d 
71.8737 d 
11.9577 h  
11.9549 h 

Ω L55 
2Ω L55 
λ55 – λ5 
λ55 + λ5 

290.56     +9 211.87t 
–16.61        –340.18t 

0.57          –17.16t 
– 4.61          +15.81t 

585.78          –792.88t 
–27.57          +162.20t 

9.58              –2.20t 
–8.33              –5.39t 

Δφ2 

143.7475 d 
71.8737 d 
11.9577 h  
11.9549 h 

Ω L55 
2Ω L55 
λ55 – λ5 
λ55 + λ5 

–14 505.42   +20 809.18t 
705.95     –8 528.58t 
–90.20        +232.96t 

–215.48        –138.61t 

7 964.79   +240 812.87t 
–1 110.22     –17 772.10t 

–118.14         – 114.91t 
118.75         – 404.03t 

 
Thebe  
(J14) 

e = 0.0176 

Δψ2 

291.3118 d 
145.6559 d 

16.1914 h 
16.1863 h 

ΩL514 
2Ω L514 
λ514 – λ5 
λ514 + λ5 

–20 924.96 –523 207.02t 
871.19 +180 592.02t 

– 463.34        +113.40t 
–76.85        +288.85t 

41 738.74–1 108 462.06t 
–9 582.70   +175 870.07t 

137.40          +384.96t 
205.30            +55.46t 

Δθ2 

291.3118 d 
145.6559 d 

16.1914 h 
16.1863 h 

Ω L514 
2Ω L514 
λ514 – λ5 
λ514 + λ5 

–1 560.60   +39 956.22t 
170.03     –3 080.78t 
–7.24            –3.94t 
8.24            +2.12t 

–871.89     –19 067.79t 
11.00       +3 191.90t 
–6.81              +4.93t 

2.76              –9.20t 

Δφ2 

291.3118 d 
145.6559 d 

16.1914 h 
16.1863 h 

Ω L514 
2Ω L514 
λ514– λ5 
λ514+ λ5 

21 951.15 +524 366.28t 
–871.47 –180 591.77t 

147.35         +19.52t 
77.02        –288.66t 

– 42 198.58+1 110 937.40t 
9 582.78   –175 869.98t 

24.12          –124.60t 
–205.62            –55.10t 

In Table 3: the superscripts h and d are the hours and days, respectively; ΩL55 and ΩL514 are 
the longitudes of ascending nodes (orbits of the Jupiter’s satellites) on the Laplace plane for 
Amalthea and Thebes, respectively; λ5 is the mean longitude of Jupiter; λ55, λ514, λ515, and λ516 
are the mean jovicentric longitudes of Amalthea, Thebes, Adrastea, and Metis, respectively; 
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and e is the eccentricity of the satellite orbit. The mean longitude of Jupiter was taken from 
the paper of Brumberg and Bretagnon (2000). The mean longitudes and longitudes of the 
ascending nodes of the Jupiter’s satellites were taken from the paper of Archinal et al. (2018). 

 

Figure 4. The values of the velocities of the change in geodetic rotations for Amalthea and Thebe in 
the Euler angles  (fragments on 10 and 1 year)   

Some asymmetry of the graphical representation of the values of the velocities of the change 
in geodetic rotations of Thebe for the Euler angles in comparison, for example, with Amalthea 
(presented in Figure 4) is explained by the relatively large eccentricity of its orbit as compared 
to the other satellite orbits (Table 3). The value of the eccentricity for Thebe orbit is lager than 
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for Amalthea orbit. The sharp peaks of the curve correspond to Thebe’s transits via perihelia. 
Thus, the values of the periodic terms of the geodetic rotation of any body of the solar system 
depend not only on their distance from the central body (Pashkevich and Vershkov, 2019), but 
also on its orbit eccentricity value (Table 3).  
Tables 4–7 present the rotational elements (α0, δ0, W) of the inner satellites of Jupiter 
(Archinal et al., 2018) and the most significant secular and periodic terms of their geodetic 
rotation (Δα0, Δδ0, ΔW) calculated in this study. 

Table 4. The rotational elements of Metis (J16)  
and their secular and periodic terms of geodetic rotation  

α0 268.05 – 0.009 T 
Δα0 0.1241 T  – 0.00007 T 2  

–8.590×10–10cos(J15) + 1.424×10–9  sin(J15) – 2.068×10–11T cos(J15) – 1.413×10–11T sin(J15) 
–7.330×10–10cos(J16) – 3.720×10–10sin(J16) + 8.023×10–12T cos(J16) – 1.750×10–11T sin(J16) 

δ0 64.49 + 0.003 T 
Δδ0 – 0.0199 T   – 0.00004 T 2 

+2.620×10–10 cos(J15) +1.306×10–10 sin(J15) – 1.233×10–12T cos(J15) + 3.193×10–12T sin(J15) 
+1.600×10–10 cos(J16) –3.161×10–10 sin(J16) +7.374×10–12 T cos(J16) + 3.613×10–12T sin(J16) 

W 33.29 + 1206.9986602 d 
ΔW – 0.0000232 d + 4×10–14 d 2 

+1.076×10–8 cos(J15) – 9.604×10–9  sin(J15) + 1.500×10–10 T cos(J15) + 1.671×10–10 T sin(J15) 
+6.420×10–10 cos(J16) +3.344×10–10 sin(J16) –6.380×10–12 T cos(J16) + 1.782×10–11T sin(J16) 

Table 5. The rotational elements of Adrastea (J15)  
and their secular and periodic terms of geodetic rotation  

α0 268.05 – 0.009 T 
Δα0 0.1217 T – 0.00006 T 2 

+4.885×10–10 cos(J13) +1.559×10–9  sin(J13) +2.235×10–10 T cos(J13) – 7.292×10–11  T sin(J13) 
–7.523×10–10 cos(J14) +2.984×10–10  sin(J14) +3.962×10–11 T cos(J14) + 1.021×10–10T sin(J14) 

δ0 64.49 + 0.003 T 
Δδ0 – 0.0195 T – 0.00004 T 2 

+2.665×10–10 cos(J13) –1.079×10–10  sin(J13)– 1.513×10–11 T cos(J13) –3.958×10–11  T sin(J13) 
–1.288×10–10 cos(J14) –3.242×10–10  sin(J14)– 4.402×10–11 T cos(J14) +1.734×10–11  T sin(J14) 

W 33.29 + 1206.9986602 d 
ΔW – 0.0000227 d + 4×10–14 d 2 

–6.374×10–11 cos(J13) – 1.418×10–8  sin(J13) – 2.032×10–9 T cos(J13) + 1.056×10–11  T sin(J13) 
+6.654×10–10 cos(J14) –2.579×10–10  sin(J14) –3.175×10–11 T cos(J14) –8.922×10–11  T sin(J14) 
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Table 6. The rotational elements of Amalthea (J5)  
and their secular and periodic terms of geodetic rotation  

α0 268.05 – 0.009 T – 0.84 sin(J1) + 0.01 sin(2 J1) 

Δα0 0.0518 T  – 0.00003 T 2 
– 1.091×10–8 cos(J1)  + 4.759×10–7  sin(J1)   +5.759×10–8 T cos(J1)     –1.618×10–8  T sin(J1) 
+1.424×10–10 cos(2J1)– 2.774×10–9  sin(2J1) –3.866×10–10 T cos(2J1) +1.040×10–10  T sin(2J1) 
– 7.333×10–10 cos(J9) – 1.016×10–9  sin(J9)    –1.531×10–10 T cos(J9)  +1.611×10–10  T sin(J9) 
+4.740×10–10 cos(J10)– 4.033×10–10 sin(J10) –8.403×10–11T cos(J10) –6.913×10–11  T sin(J10) 

δ0 64.49 + 0.003 T – 0.36 cos(J1) 

Δδ0 – 0.0083 T – 0.00002 T 2 
+2.057×10–7 cos(J1)    –1.972×10–9  sin(J1)    –6.964×10–9 T cos(J1)    –2.489×10–8  T sin(J1) 
–9.629×10–10 cos(2J1) –1.405×10–11 sin(2J1) +2.196×10–11T cos(2J1) +8.530×10–11 T sin(2J1) 
– 1.656×10–10 cos(J9)  +1.449×10–10  sin(J9)  +3.135×10–11 T cos(J9)   +2.542×10–11  T sin(J9) 
+1.739×10–10 cos(J10) +2.039×10–10 sin(J10) +2.980×10–11T cos(J10) –3.628×10–11 T sin(J10) 

W 231.67 + 722.6314560 d + 0.76 sin(J1) – 0.01 sin(2 J1) 

ΔW – 0.0000097 d  + 2×10–14 d 2 
+ 3.907×10–9 cos(J1)  – 4.044×10–7  sin(J1)    –5.001×10–8 T cos(J1)     +1.474×10–8  T sin(J1) 
– 1.267×10–10 cos(2J1)+2.853×10–9 sin(2J1)  +3.878 ×10–10 T cos(2J1) –1.050×10–10 T sin(2J1) 
+ 3.527×10–9 cos(J9)  +1.030×10–8  sin(J9)    +1.687×10–9 T cos(J9)     –9.374×10–10  T sin(J9) 
– 4.263×10–10 cos(J10)+3.506×10–10 sin(J10)+7.343×10–11T cos(J10)   +6.139×10–11 T sin(J10) 

Table 7. The rotational elements of Thebe (J14)  
and their secular and periodic terms of geodetic rotation  

α0 268.05 – 0.009 T – 2.11 sin(J2) + 0.04 sin(2J2) 

Δα0 0.0312 T – 0.00002 T 2 
–1.284×10–7 cos(J2)    +1.691×10–6  sin(J2)   +3.038×10–7 T cos(J2)     + 2.561×10–8  T sin(J2) 
+2.417×10–9 cos(2J2)  –2.937×10–8  sin(2J2) –5.145×10–9 T cos(2J2)   – 4.619×10–10  T sin(2J2) 
–1.736×10–10 cos(J11) +1.244×10–9 sin(J11)  –1.025×10–10 T cos(J11) – 1.443×10–11  T sin(J11) 
–6.169×10–10 cos(J12) –3.647×10–11 sin(J12) +4.938×10–12 T cos(J12) – 5.795×10–11 T sin(J12) 

δ0 64.49 + 0.003 T – 0.91 cos(J2) + 0.01 cos(2J2) 

Δδ0 – 0.0050 T – 0.00002 T 2 
+7.282×10–7 cos(J2)    + 3.502×10–8  sin(J2)   +1.115×10–8 T cos(J2)     –1.311×10–7  T sin(J2) 
–6.510×10–9 cos(2J2)  – 4.351×10–10  sin(2J2) –1.171×10–10 T cos(2J2) +1.131×10–9  T sin(2J2) 
+2.223×10–10 cos(J11) + 1.410×10–11 sin(J11) –7.947×10–13 T cos(J11) +1.754×10–11T sin(J11) 
+1.612×10–11 cos(J12) – 2.664×10–10 sin(J12) +2.429×10–11T cos(J12) +1.468×10–12 T sin(J12) 

W 8.56 + 533.7004100 d + 1.91 sin(J2) – 0.04 sin(2J2) 

ΔW – 0.0000058 d  + 1×10–14 d 2 
+9.219×10–8 cos(J2)    –1.443×10–6  sin(J2)    –2.651×10–7 T cos(J2)     –1.892×10–8  T sin(J2) 
–2.387×10–9 cos(2J2)  +2.933×10–8  sin(2J2)  +5.164 ×10–9 T cos(2J2) +4.613×10–10  T sin(2J2) 
+4.639×10–9 cos(J11)  –9.887×10–9  sin(J11)  +8.151×10–10 T cos(J11) +3.821×10–10  T sin(J11) 
+5.425×10–10 cos(J12) +3.867×10–11 sin(J12) –3.672×10–12T cos(J12)  +5.247×10–11 T sin(J12) 

T is Dynamical Barycentric time (TDB) measured in Julian centuries (сjy) (of 36525 days) 
from the epoch J2000.0;  d is TDB measured in Julian days (jd) from the epoch J2000.0; all 
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angle values (α0, Δα0, δ0, Δδ0, W, ΔW) measured in degrees; J1 = ΩL55 = 73º.32 + 91472º.9T, 
J2 = ΩL514 = 24º.62 + 45137º.2T, J9 = λ55– λ5, J10 = λ55+ λ5, J11 = λ514 – λ5, J12 = λ514 + λ5, 
J13 = λ515 – λ5, J14 = λ515 + λ5, J15 = λ516 – λ5, J16 = λ516 + λ5, λ5 = 34º.35 + 3034º.9T, 
λ55 = 722º.6314560d, λ514 = 533º.7004100d, λ515 = 1206º.9986602d, λ516 = 206º.9986602d. 
As can be seen from Table 2 and Tables 4–7, the values of the geodetic precession of the 
satellites increase as their distance to the central body (Jupiter) decreases, making a 
significant contribution to the values of right ascents and declinations of the satellites under 
consideration (see Tables 4–7). So, for example, for Metis (the closest satellite to Jupiter at 
the moment), the value of the geodetic precession in right ascension Δα0 is 13 times greater in 
absolute value than the resultant value of its right ascension α0, and the value of the geodetic 
precession in declination Δδ0 is seven times greater in absolute value than the resulting value 
of its declination δ0. For Thebe (the farthest satellite from the Jupiter’s satellites under 
consideration), these values (Δα0, Δδ0) are three and two times greater in absolute value than 
α0 and δ0, respectively. From this circumstance, it follows that in the solar system, there are 
objects with significant geodetic rotation, due primarily to their proximity to the central body, 
and not to its mass. In particular, the value of the geodetic precession of the inner satellites of 
Jupiter is comparable to their precession in the Newtonian approximation (see Tables 4–7). 

4. CONCLUSIONS 
In this study, for the first time, the most significant secular and periodic terms of the geodetic 
rotation of the inner satellites of Jupiter (Thebe (J14), Amalthea (J5), Adrastea (J15), and 
Metis (J16)) were determined in the rotational elements relative to the ICRF equator and the 
equinox of the J2000.0 and in the Euler angles with respect to their proper coordinate systems. 
The secular terms of geodetic rotation of Jovian satellites mainly depend on their distance 
from the Jupiter. The values of the periodic terms of the geodetic rotation of any body of the 
solar system depend not only on their distance from the central body, but also on its orbit 
eccentricity value. 
The present study showed that the values of the geodetic rotation can be significant not only 
for objects that revolve around super-massive central bodies (neutron stars), but also for 
bodies with a short distance to the central body, for example, close satellites of giant planets.  
The obtained analytical values for the geodesic rotation of the inner moons of Jupiter can be 
used to numerically study their rotation in the relativistic approximation. 
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