PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Variability of the Composition of Sewage Sludge Before and After Drying Treatment – SEM Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the physical and chemical properties of the sewage sludge from “Pomorzany” and “Zdroje” municipal wastewater treatment plants located in Szczecin, Poland. The paper presents the outcomes of SEM observation of dried and stabilized sewage sludge. The research on the obtained materials was conducted using reference methods; the images from a scanning electron microscope were used. The amount of sewage sludge produced with the methods of its management was presented. The technology of sludge management is based on its dehydration up to dry weight content of roughly 20% and then drying in contact dryers up to 90–92% dry weight, separately in both plants. Dried sewage sludge is subsequently burned in mechanical grid boilers at “Pomorzany” WWTP. The analyzed materials were characterized by the pH of 7.90–8.42, dry mass and average organic matter content were 18.949% and 68.903%, respectively. The elements identified in the largest amount on the surface of analyzed materials included calcium, iron, phosphorus, sulphur and silicon. The amount of phosphorus ranging from 1.82 to 3.44% indicates the possibility of using sewage sludge as organic fertilizer product or an alternative source of phosphorus.
Rocznik
Strony
45--52
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Sanitary Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
  • Department of Sanitary Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
  • Department of Building Physics and Building Materials, West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland
Bibliografia
  • 1. Beavington F, Cawse PA, Wakenshaw A (2004) Comparative studies of atmospheric trace elements: improvements in air quality near a copper smelter. Science of Total Environment 332, 39–49, DOI: 10.1016/j.scitotenv.2004.04.016.
  • 2. Cieślik, B. M., Namieśnik, J., & Konieczka, P. (2015). Review of sewage sludge management: standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1–15. DOI: 10.1016/j.jclepro.2014.11.031.
  • 3. Cornel, P., Meda, A. & Bieker, S. (2011) Wastewater as a source of energy, nutrients, and service water. Treatise on Water Science (P. Wilderer, ed.). Elsevier, Oxford, 337–375.
  • 4. European Statistical Office Eurostat (2019) (https://ec.europa.eu/eurostat/ (07.05.2019)).
  • 5. Eckel, H., Roth, U., Döhler, H., & Schultheis, U. (2008). Assessment and reduction of heavy metal input into agro-ecosystems. Trace elements in animal production systems, 33–43.
  • 6. Głowacka, A., Rucińska, T., Kiper, J. (2017). The slag original from the process of sewage sludge incineration selected properties characteristic. E3S Web of Conferences 22, 00054–0058. EDP Sciences. DOI: 10.1051/e3sconf/20172200054.
  • 7. Henclik, A., Kulczycka, J., Gorazda, K., Wzorek, Z. (2014). Conditions of sewage sludge management in Poland and Germany. Engineering and Protection of Environment, 17, 185–198 (in Polish).
  • 8. Iżewska, A., Krzywy, E., & Balcer, K. (2007). Impact of sewage sludge and composts prepared from sewage sludge on the content and uptake of macronutrients by straw of miscanthus sacchariflorus. Polish Journal of Chemical Technology, 9(3), 56–59.
  • 9. Ju, F., Li, B., Ma, L., Wang, Y., Huang, D., & Zhang, T. (2016). Antibiotic resistance genes and human bacterial pathogens: co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water research, 91, 1–10. DOI: 10.1016/j.watres.2015.11.071.
  • 10. Kaplan, D. I., Knox, A. S. (2004). Enhanced contaminant desorption induced by phosphate mineral additions to sediment. Environmental science & technology, 38(11), 3153–3160, DOI 10.1021/es035112f.
  • 11. Kelessidis, A.; Stasinakis, A. S. (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste management, 32(6), 1186–1195, DOI: 10.1016/j.wasman.2012.01.012.
  • 12. Kiper, J. (2017). The possibilities of natural development of ash-sludge blends. Inżynieria Ekologiczna, 18(3), 74–82. DOI: 10.12912/23920629/70260.
  • 13. Lu, Y., Wu, X., & Guo, J. (2009). Characteristics of municipal solid waste and sewage sludge co-composting. Waste Management, 29(3), 1152–1157. DOI: 10.1016/j.wasman.2008.06.030.
  • 14. Niesler, J., Nadziakiewicz, J. (2013). Evaluating possibilities for co-combustion of municipal waste and sewage sludge in the Silesian agglomeration. Piece Przemysłowe & Kotły, (9–10), 29–41 (in Polish).
  • 15. Ociepa-Kubicka A., Ociepa E. (2012) Toxic effects of heavy metals on plants, animals and humans, Engineering and Protection of Environment, 15(12), 169–180.
  • 16. Parés Viader, R., Jensen, P. E., Ottosen, L. M., Thomsen, T. P., Ahrenfeldt, J., & HauggaardNielsen, H. (2017). Comparison of phosphorus recovery from incineration and gasification sewage sludge ash. Water Science and Technology, 75(5), 1251–1260. DOI: 10.2166/wst.2016.620.
  • 17. Pueyo, M., Lopez-Sanchez, J. F., Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica chimica acta, 504 (2), 217–226. DOI: 10.1016/j. aca.2003.10.047.
  • 18. Resolution No. 88 of the Council of Ministers of 1 July 2016 on the National Waste Management Plan 2022; (Monitor Polski No. 88, item 784).
  • 19. Rio, S., Faur-Brasquet, C., Le Coq, L., Le Cloirec, P. (2005). Structure characterization and adsorption properties of pyrolyzed sewage sludge. Environmental science & technology, 39(11), 4249–4257. DOI: 10.1021/es0497532.
  • 20. Schröder, P., Navarro-Aviñó, J., Azaizeh, H., Goldhirsh, A. G., DiGregorio, S., Komives, T., Ranalli, A. (2007). Using phytoremediation technologies to upgrade waste water treatment in Europe. Environmental Science and Pollution Research-International, 14(7), 490–497.
  • 21. Singh, R. P., Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. Waste management, 28(2), 347–358. DOI: 10.1016/j.wasman.2006.12.010.
  • 22. Skawińska, A., Kuklis, I. (2014). Evaluation of energy usefulness of the municipal sewage sludge based on the analysis of physico-chemical parameters. Przegląd Górniczy, 70(12), 74–77.
  • 23. The Ministry of the Environment (2018). Strategy of proceeding with municipal sewage sludge for the years 2019–2022. (https://www.gov.pl/documents/1379842/1381036/Strategia_postępowania_z_komunalnymi_osadami_ściekowymi_na_lata_2019–2022.pdf/7ce1630d5dec-e0ef-2083–074e06dc2d16 (07.05.2019)) (in Polish).
  • 24. Wang, Q. R., Cui, Y. S., Liu, X. M., Dong, Y. T., Christie, P. (2003). Soil contamination and plant uptake of heavy metals at polluted sites in China. Journal of Environmental Science and Health, Part A, 38(5), 823–838. DOI: 10.1081/ESE120018594.
  • 25. Zorpas, A. A., Coumi, C., Drtil, M., & Voukalli, I. (2011). Municipal sewage sludge characteristics and waste water treatment plant effectiveness under warm climate conditions. Desalination and Water Treatment, 36(1–3), 319–333. DOI: 10.5004/ dwt.2011.2773.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73860c5a-76aa-4d75-bc80-41d435ce7d03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.