Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the pyrolysis of a single cylindrical wood particle using particle image velocimetry (PIV). The pyrolysis was conducted inside a pyrolysis reactor designed for this purpose. The experimental setup presented in this paper is capable of effectively characterizing the intensity of pyrolysis based on velocity distribution in the vicinity of wood particles. The results of the gas velocity distribution show that evaporation of moisture has as a major impact on the formation of the gas cushion as devolatilization.
Czasopismo
Rocznik
Tom
Strony
3--13
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
- [1] Ronald J.A.: Particle imaging techniques for experimental fluid mechanics. Annu Rev. Fluid Mech. 23(1991), 261–304.
- [2] Xu D., Chen J.: Accurate estimate of turbulent dissipation rate using PIV data. Exp Therm Fluid Sci. 44(2013), 662–672.
- [3] Fu S., Biwole P.H., Mathis C.: Numerical and experimental comparison of 3D Particle Tracking Velocimetry (PTV) and Particle Image Velocimetry (PIV) accuracy for indoor airflow study. Build Environ. 100(2016), 40–49.
- [4] Ertür N., Vernet A., Pallares J., Castilla R., Raush G.: Small-scale characteristics and turbulent statistics of the flow in an external gear pump by time-resolved PIV. Flow Meas. Instrum. 29(2013), 52–60.
- [5] Vali A., Nobes D.S., Kostiuk L.W.: Characterization of flow field within the liquid phase of a small pool fire using particle image velocimetry technique. Exp. Therm. Fluid Sci. 75(2016), 228–234.
- [6] Di Sarli V., Di Benedetto A., Long E.J., Hargrave G.K.: Time-resolved particle image velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures. Int. J. Hydrogen Energ. 37(2012), 16201–16213.
- [7] McKendry P.: Energy production from biomass (Part 2): Conversion technologies. Bioresource Technol. 83(2002) 47–54.
- [8] Janse A.M.C., Westerhout R.W.J., Prins W.: Modelling of flash pyrolysis of a single wood particle. Chem. Eng. Process. 39(2000), 239–252.
- [9] Wardach-Święcicka I., Kardaś D.: Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Arch. Thermodyn. 34(2013), 2, 53–71.
- [10] Neves D., Thunman H., Matos A., Tarelho L., Gomez-Barea A.: Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 37(2011), 611–630. http://dx.doi.org/10.1016/j.pecs.2011.01.001
- [11] Alauddin Z.A.B.Z., Lahijani P., Mohammadi M., Mohanmed A.R.: Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renew. Sust. Energ. Rev. 14(2010), 9, 2852–2862. http://dx.doi.org/10.1016/j.rser.2010.07.026
- [12] Yildiz G., Ronssea F., Venderbosch R., van Duren R., Kerstend S.R.A., Prins W.: Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl. Catal. B 168-169(2015), 203–211. http://dx.doi.org/10.1016/j.fuproc.2009.09.015
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73838cd8-8052-4469-9508-90a617ac94df