PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ technologii układania betonu samozagęszczalnego na nośność połączenia beton-beton oraz stal-beton w elementach wykonywanych warstwowo

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Effect of self-compacting concrete placement technology on the load-bearing capacity of the concrete-concrete and steel-concrete bond in layered elements
Języki publikacji
PL EN
Abstrakty
PL
Artykuł przedstawia badania dotyczące technologii warstwowego wykonywania konstrukcji z betonu samozagęszczalnego. Badania przeprowadzono na elementach panelowych o wymiarach 800×480×160 mm, betonowanych w dwóch warstwach z jednego punktu podawania mieszanki. Założono trzy różne czasy opóźnienia podawania drugiej warstwy mieszanki: 15, 30 oraz 60 minut. Przeanalizowano dwa warianty technologiczne podawania mieszanki: od góry i od dołu formy. Analizowano wpływ technologii układania mieszanki na nośność połączenia warstw betonu oraz pręta zbrojeniowego z betonem. Nośność połączenia warstw betonu określono za pomocą badania wytrzymałości na rozciąganie przy rozłupywaniu, na próbkach rdzeniowych pobranych z elementów panelowych. W dotychczasowej literaturze badanie nośności połączenia warstw było badane na znacznie mniejszych elementach i nie uwzględniały one innej technologii podawania mieszanki niż tradycyjna. Badanie przyczepności pręt zbrojeniowy-beton na styku warstw wykonano metodą pull-out. Wykazano duże różnice w sposobie mieszania się warstw betonu, w zależności od zastosowanej technologii jego podawania. Betonowanie od góry formy powodowało spadek nośności zespolenia warstw jak i zmniejszenie sztywności i nośności połączenia pręt zbrojeniowy-beton wraz ze zwiększeniem czasu opóźnienia podawania drugiej warstwy. Z kolei betonowanie od dołu formy zapewniło uzyskanie nośności zespolenia warstw betonu na poziomie 90% wytrzymałości próbki monolitycznej w całym zakresie badań. Technologia betonowania od dołu została polecona do wykonywania elementów w technologii wielowarstwowej z betonu samozagęszczalnego.
EN
The article presents a study on the technology of layered execution in self-compacting concrete structures. The research focused on 800×480×160 mm panel elements, cast in two layers from a single mix casting point. Three different delay times for delivering the second layer of mix were considered: 15, 30 and 60 minutes. Two technological variants of mix application were analysed: from the top and from the bottom of the mould. The study investigated the influence of the placement technology on the load bearing capacity of the concrete layer-to-layer joint and the rebar-to-concrete joint. The load-bearing capacity of the concrete layer-to-layer joint was determined through a splitting tensile strength test on core specimens extracted from panel elements. Notably, existing literature has primarily explored the load-bearing capacity of the concrete layer-to-layer joint on smaller elements and has not accounted for mix placing technologies diverging from the traditional one. A test of the rebar-to-concrete bond at the layer interface was conducted using the pull-out method. Substantial differences were identified in the mixing pattern of concrete layers, contingent on the placing technology employed. Top-down casting led to a reduction in the load-bearing capacity of the concrete layer-to-layer interface, coupled with decreased stiffness and bond strength of the rebar-to-concrete connection as the delay time of the second layer increased. Conversely, bottom-up concreting maintained the load-bearing capacity of the combined concrete layers at 90% of the strength of the monolithic specimen throughout the entire test range. The article recommends the utilization of bottom-up placing technology for executing elements in the multilayer casting of self-compacting concrete.
Czasopismo
Rocznik
Strony
210--224
Opis fizyczny
Bibliogr. 39 poz., il., tab.
Bibliografia
  • 1. EN 13670: The Execution of Concrete Structures, European Committee for Standardization, Brussels, Belgium, 2010.
  • 2. EN 206: Concrete - Specification, Performance, Production and Conformity, European Committee for Standardization, Brussels, Belgium, 2016.
  • 3. ACI 237 R-07: Self-Consolidating Concrete, American Concrete Institute, 2007.
  • 4. EFNARC Specification and Guidelines for Self-Compacting Concrete. European federation of specialist construction chemicals and concrete system, 2002.
  • 5. RILEM TC 188-CSC, Casting of Self Compacting Concrete, A. Skarendahl, P. Billberg, RILEM Publications, 2006.
  • 6. J. Szwabowski, J. Gołaszewski, Technologia betonu samozagęszczalnego, Stowarzyszenie Producentów Cementu, Kraków 2010.
  • 7. C.M. Stolz, A.B. Masuero, D.T. Pagnussat, A.P. Kirchheim, Influence of substrate texture on the tensile and shear bond strength of rendering mortars. Constr. Build. Mater., 128, 298-307 (2016). https://doi.org/10.1016/j.conbuildmat.2016.10.097
  • 8. E.N.B.S. Julio, F.A.B. Branco, V.D. Silva, Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface. Constr. Build. Mater., 18(9), 675-681 (2004). https://doi.org/10.1016/j.conbuildmat.2004.04.023
  • 9. P.M.D. Santos, E.N.B.S. Julio, V.D. Silva, Correlation between concrete-to-concrete bond strength and the roughness of the substrate surface. Constr. Build. Mater., 21(8), 1688-1695 (2007). https://doi.org/10.1016/j.conbuildmat.2006.05.044
  • 10. H. Beushausen, B. Höhlig, M. Talotti, The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ. Cem. Concr. Res., 92, 84-91(2017). https://doi.org/10.1016/j.cemconres.2016.11.017Get rights and content
  • 11. Ł. Sadowski, A. Żak, J. Hoła, Multi-sensor evaluation of the concrete within the interlayer bond with regards to pull-off adhesion, Archives of Civil and Mechanical Engineering, 18(2), 573-582 (2018). https://doi.org/10.1016/j.acme.2017.09.008
  • 12. Ł. Sadowski, Adhesion in Layered Cement Composites, Springer Nature Switzerland 2019.
  • 13. P. Dybeł, M. Kucharska, Effect of multilayer casting technology of self-compacting concrete slabs on the load-bearing capacity of a layer-to-layer joint. J. Build. Eng., 64, 1-11 (2023). https://doi.org/10.1016/j.jobe.2022.105655
  • 14. P. Dybeł, M. Kucharska, Effect of Placement Technology on the Bond Strength between Two Layers of Self-Compacting Concrete. Materials, 13, (2020). https://doi.org/10.3390/ma13153330
  • 15. N. Roussel, F. Cussigh, Distinct-Layer Casting of SCC: The Mechanical Consequences of Thixotropy. Cem. Concr. Res., 38, 624-632 (2008). https://doi.org/10.1016/j.cemconres.2007.09.023
  • 16. W.A. Megid, K.H. Khayat, Bond Strength in Multilayer Casting of Self-Consolidating Concrete. ACI Struct. J., 114, 467-476 (2017). https://doi.org/10.14359/51689597
  • 17. W.A. Megid, K.H. Khayat, Effect of Structural Buildup at Rest of Self-Consolidating Concrete on Mechanical and Transport Properties of Multilayer Casting. Constr. Build. Mat., 196, 626-636 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.112
  • 18. I. Navarrete, M. Lopez, Y. Kurama, Multi-Layer Casting of Self-Consolidating Concrete: Influence of Mortar Rheology and Casting Parameters on the Inter-Layer Bond Strength. Construction and Building Materials, 303, (2021). https://doi.org/10.1016/j.conbuildmat.2021.124492
  • 19. A.A. Shirzadi Javid, P. Ghoddousi, G. Ghodrati Amiri, K.A. Donyadideh, A New Photogrammetry Method to Study the Relationship between Thixotropy and Bond Strength of Multi-Layers Casting of Self-Consolidating Concrete. Constr. Build. Mat., 204, 530-540 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.204
  • 20. J.J. Assaad, Y. Daou, Bonding Agents to Mitigate Interfacial Strength Loss during Multi-Layer Concrete Casting. Proceedings of the Institution of Civil Engineers - Construction Materials, 174, 195-205 (2021). https://doi.org/10.1680/jcoma.18.00077
  • 21. L.N. Thrane, C.V. Nielsen, C. Pade, Guidelines for Execution of SCC, Danish Technological Institute, Concrete Centre, Taastrup, 2008.
  • 22. S. Tichko, G. De Schutter, P. Troch, J. Vierendeels, R. Verhoeven, K. Lesage, N. Cauberg, Influence of the viscosity of self-compacting concrete and the presence of rebars on the formwork pressure while filling bottom-up, Eng. Struct., 101, 698-714 (2015). https://doi:10.1016/j.engstruct.2015.08.008
  • 23. EN 12620: Aggregates for Concrete, Belgium, 2010.
  • 24. G. De Schutter, P.J.M. Bartos, P. Domone, Self-Compacting Concrete, Whittles Publishing, Dunbeath, 2008.
  • 25. RILEM TC, RILEM Recommendations for the Testing and Use of Construction Materials, RC 6 Bond Test for Reinforcement Steel. Pull-Out Test, 1983, E&FN SPON, 1994.
  • 26. EN 10080: Steel for the Reinforcement of Concrete, European Committee for Standardization, Brussels, Belgium, 2007.
  • 27. EN 12350-8: Testing fresh concrete, Part 8: Self-compacting concrete - Slump-flow test, European Committee for Standardization, Brussels, Belgium, 2010.
  • 28. EN 12350-10: Testing fresh concrete, Part 10: Self-compacting concrete - L-box test, European Committee for Standardization, Brussels, Belgium, 2010.
  • 29. ASTM International ASTM C1611: Standard Test Method for Slump Flow of Self-Consolidating Concrete, 2018.
  • 30. EN 12390-3: Testing Hardened Concrete. Compressive Strength of Test Specimens, European Committee for Standardization, Brussels, Belgium, 2009.
  • 31. EN 12390-6, Testing Hardened Concrete. Tensile Splitting Strength of Test Specimens, European Committee for Standardization, Brussels, Belgium, 2009.
  • 32. The Self-Compacting Concrete European Project Group The European Guidelines for Self-Compacting Concrete: Specification, Production and Use, 2005.
  • 33. ACI 318-05, Building Code Requirements for Structural Concrete, American Concrete Institute: Farmington Hills, MI, USA, 2005.
  • 34. M. Valcuende, C. Parra, Bond behaviour of reinforcement in self-compacting concretes. Constr. Build. Mater., 23, 162-170 (2009). https://doi.org/10.1016/j.conbuildmat.2008.01.007
  • 35. A.A.A. Hassan, K.M.A. Hossain, M. Lachemi, Bond strength of deformed bars in large reinforced concrete members cast with industrial self-consolidating concrete mixture. Constr. Build. Mater. 24, 520-530 (2010). https://doi.org/10.1016/j.conbuildmat.2009.10.007
  • 36. Task group bond model. Bond of Reinforcement in Concrete: State-of-the-Art Report; Bulletin 10 (fib Fédération internationale du béton); International Federation for Structural Concrete: Lausanne, Switzerland, 2000.
  • 37. F. Moccia, M. Fernández Ruiz, G Metelli, A. Muttoni, G. Plizzari, Casting position effects on bond performance of reinforcement bars. Struct. Concr. 22, 1612-1632 (2021). https://doi.org/10.1002/suco.202000572
  • 38. K. Lundgren, Bond between ribbed bars and concrete. Part 1: Modified model. Mag. Concr. Res., 57, 371-382 (2005). https://doi.org/10.1680/macr.2005.57.7.371
  • 39. P. Dybeł, Effect of bottom-up placing of self-compacting concrete on microstructure of rebar-concrete interface. Constr. Build. Mater. 299, (2021). https://doi.org/10.1016/j.conbuildmat.2021.124359
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73812b74-678a-4f1a-8898-baac27024aec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.