PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration sensing with the optical fibre Mach-Zehnder interferometer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibration is a ubiquitous phenomenon that occurs in everyday life and people are exposed to it almost all the time. Most often, vibration is measured using electromechanical devices such as piezoelectric, piezoresistive, or capacitive accelerometers. However, attention should be paid to the limitations of such vibration sensors. They cannot operate in the presence of strong electromagnetic fields. Measurements with electromechanical devices require physical contact between the sensor and the vibrating object, which is not always possible due to the design of the sensor and device. The possibility of a non-contact vibration measurement in harsh environments is provided by the technology of interferometric fibre optic sensors. This paper reports the principle of operation, design aspects, experimentation, and performance of a Mach-Zehnder interferometric setup for the measurement of vibration frequency. There are different sensing arms implemented in the interferometer: single-mode, polarization-maintaining, and tapered optical fibre. The paper emphasises the simplicity of the set-up structure and the detection capabilities based on the interferometric sensing giving the possibility of constructing a commercial vibration sensor for all industry demands.
Twórcy
  • Institute of Technical Physics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Technical Physics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Mohd Ghazali, M. H. & Rahiman, W. Vibration analysis for machine monitoring and diagnosis: A systematic review. Shock. Vib. 2021, 9469318 (2021). https://doi.org/10.1155/2021/9469318.
  • [2] Jafari, M. & Alipour, A. Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review. J. Build. Eng. 33, 101582 (2021). https://doi.org/10.1016/j.jobe.2020.101582.
  • [3] Hou, R. & Xia, Y. Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019. J. Sound Vib. 491, 115741 (2021). https://doi.org/10.1016/j.jsv.2020.115741.
  • [4] Agrawal, H. & Mishra, A. K. An innovative technique of simplified signature hole analysis for prediction of blast-induced ground vibration of multi-hole/production blast: an empirical analysis. Nat. Hazards 100, 111-132 (2020). https://doi.org/10.1007/s11069-019-03801-2.
  • [5] Yan, Y., Li, T., Liu, J., Wang, W. & Su, Q. Monitoring and early warning method for a rockfall along railways based on vibration signal characteristics. Sci. Rep. 9, 6606 (2019). https://doi.org/10.1038/s41598-019-43146-1.
  • [6] Feng, Z. & Yufeng, Z. Research Progress of Mechanical Vibration Sensors. in 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM) 412-416 (IEEE, 2020). https://doi.org/10.1109/WCMEIM52463.2020.00093.
  • [7] Wang, Y. et al. A comprehensive study of optical fiber acoustic sensing. IEEE Access 7, 85821-85837 (2019). https://doi.org/10.1109/Access.2019.2924736.
  • [8] Liu, X. et al. Distributed fiber-optic sensors for vibration detection. Sensors 16, 1164 (2016). https://doi.org/10.3390/S16081164.
  • [9] Varanis, M., Silva, A., Mereles, A. & Pederiva, R. MEMS accelerometers for mechanical vibrations analysis: A comprehensive review with applications. J. Braz. Soc. Mech. Sci. 40, 527 (2018). https://doi.org/10.1007/s40430-018-1445-5.
  • [10] Perrone, G. & Vallan, A. A low-cost optical sensor for noncontact vibration measurements. IEEE Trans. Instrum. Meas. 58, 1650-1656 (2009). https://doi.org/10.1109/tim.2008.2009144.
  • [11] Castrellon-Uribe, J. Optical Fiber Sensors: An Overview. in Fiber Optic Sensors (eds. Yasin, M., Harun, S. W. & Arof, H.) 1-28 (InTech, 2012). https://doi.org/10.5772/28529.
  • [12] Bado, M. F. & Casas, J. R. A review of recent distributed optical fiber sensors applications for civil engineering structural health moni-toring. Sensors 21, 1818 (2021). https://doi.org/10.3390/s21051818.
  • [13] Liaw, S. Introductory Chapter: An Overview the Methodologies and Applications of Fiber Optic Sensing. in Fiber Optic Sensing - Principle, Measurement and Applications (ed. Liaw, S.-K.) ch. 1 (IntechOpen, 2019). https://doi.org/10.5772/intechopen.86525.
  • [14] Webb, D. J. Optical-fiber sensors: An overview. MRS Bull. 27, 365-369 (2002). https://doi.org/10.1557/mrs2002.121.
  • [15] Méndez, A. & Csipkes, A. Overview of Fiber Optic Sensors for NDT Applications. in Nondestructive Testing of Materials and Structures (eds. Güneş, O. & Akkaya, Y.) 179-184 (Springer, 2013). https://doi.org/10.1007/978-94-007-0723-8_26
  • [16] Bang, H.-J., Jun, S.-M. & Kim, Ch.-G. Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors. Meas. Sci. Technol. 16, 813 (2005). https://doi.org/10.1088/0957-0233/16/3/024.
  • [17] Liang, T.-Ch. & Lin, Y.-L. Ground vibrations detection with fiber optic sensor. Opt. Commun. 285, 2363-2367 (2012). https://doi.org/10.1016/j.optcom.2012.01.037.
  • [18] Lu, L., Cao, Z., Dai, J., Xu, F. & Yu, B. Self-mixing signal in er3+-yb3+ codoped distributed bragg reflector fiber laser for remote sensing applications up to 20 km. IEEE Photon. Technol. Lett. 24, 392-394 (2012). https://doi.org/10.1109/LPT.2011.2179922.
  • [19] Lu, L., Yang, J., Zhao, Y., Du, Z. & Yu, B. Self-mixing interference in an all-fiberized configuration Er3+-Yb3+ codoped distributed Bragg reflector laser for vibration measurement. Curr. Appl. Phys. 12, 659-662 (2012). https://doi.org/10.1016/j.cap.2011.09.018.
  • [20] Wang, C. et al. Quasi-distributed fiber sensor based on Fresnel-reflection-enhanced Incomplete-POTDR system. Proc. SPIE 9634, 96347F (2015). https://doi.org/10.1117/12.2194481.
  • [21] Muanenda, Y., Oton, C. J., Faralli, S. & Di Pasquale, F. A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR. IEEE Photon. J. 8, 1-10 (2016). https://doi.org/10.1109/JPHOT.2015.2508427.
  • [22] Ren, M., Lu, P., Chen, L. & Bao, X. Theoretical and experimental analysis of Φ-OTDR based on polarization diversity detection. IEEE Photon. Technol. Lett. 28, 697-700 (2015). https://doi.org/10.1109/LPT.2015.2504968.
  • [23] Zhang, Q., Zhu, T., Hou, Y. & Chiang, K. S. All-fiber vibration sensor based on a Fabry Perot interferometer and a microstructure beam, J. Opt. Soc. Am. B 30, 1211-1215 (2013). https://doi.org/10.1364/JOSAB.30.001211.
  • [24] Sathitanon, N. & Pullteap, S. A fiber optic interferometric sensor for dynamic measurement. Proc. World Acad. Sci. Eng. Technol. (PWASET) 26, 526-529 (2007).
  • [25] Giuliani, G., Norgia, M., Donati, S. & Bosch, T. Laser diode self-mixing technique for sensing applications. J. Opt. 4, S283 (2002). https://doi.org/10.1088/1464-4258/4/6/371.
  • [26] Castellini, P., Martarelli, M. & Tomasini, E. Laser Doppler vibrometry: development of advanced solutions answering to technology’s need. Mech. Syst. Signal Process. 20, 1265-1285 (2006). https://doi.org/10.1016/j.ymssp.2005.11.015.
  • [27] Chijioke, A. & Lawall, J. Laser Doppler vibrometer employing active frequency feedback. App. Opt. 47, 4952-4958 (2008). https://doi.org/10.1364/AO.47.004952.
  • [28] Antunes, P. et al. Optical fiber accelerometer system for structural dynamic monitoring. IEEE Sens. J. 9, 1347-1354 (2009). https://doi.org/10.1109/JSEN.2009.2026548.
  • [29] Liu, Q. P. et al. Novel fiber Bragg grating accelerometer based on diaphragm. IEEE Sens. J. 12, 3000-3004 (2012). https://doi.org/10.1109/JSEN.2012.2201464.
  • [30] Guo, F. et al. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 37, 1505-1507 (2012). https://doi.org/10.1364/OL.37.001505.
  • [31] Wang, S. et al. An infrasound sensor based on extrinsic fiber-optic Fabry-Perot interferometer structure. IEEE Photon. Technol. Lett. 28, 1264-1267 (2016). https://doi.org/10.1109/LPT.2016.2538318.
  • [32] Xie, S., Zhang, M., Li, Y. & Liao, Y. The influence of fiber inhomogeneity on the positioning accuracy of distributed fiber vibration sensor. Proc. SPIE 8561, 85610O (2012). https://doi.org/10.1117/12.999841.
  • [33] Tu, D., Xie, S., Jiang, Z. & Zhang, M. Ultra long distance distributed fiber-optic system for intrusion detection. Proc. SPIE 8561, 85611W (2012). https://doi.org/10.1117/12.2001292.
  • [34] Rao, Y. et al. Long-distance fiber-optic Φ-OTDR intrusion sensing system. Proc. SPIE 7503, 75031O (2009). https://doi.org/10.1117/12.835324.
  • [35] Sun, Z., Xu, Y., Yu, W., Zhang, G. & Fang, W. Optical fiber distributed vibration sensor based on dual Mach-Zehnder interferometer using an improved phase generated carrier algorithm. Infrared Phys. Technol. 127, 104440 (2022). https://doi.org/10.1016/j.infrared.2022.104440.
  • [36] Udd, E. A personal tour of the fiber optic Sagnac interferometer. Proc. SPIE 7316, 73160R (2009). https://doi.org/10.1117/12.819207.
  • [37] Chen, Q. et al. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer. Opt. Express 22, 2167-2173 (2014). https://doi.org/10.1364/OE.22.002167.
  • [38] Zhao, Y., Xia, F., Chen, M. & Lv, R. Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer. Sens. Actuator. A Phys. 273, 107-112 (2018). https://doi.org/10.1016/j.sna.2018.01.051.
  • [39] Tsuda, H., Koo, J.-H. & Kishi, T. Detection of simulated acoustic emission with Michelson interferometric fiber-optic sensors. J. Mater. Sci. Lett. 20, 55-56 (2001). https://doi.org/10.1023/A:1006714815182.
  • [40] He, Q. et al. All fiber distributed vibration sensing using modulated time-difference pulses. IEEE Photon. Technol. Lett. 25, 1955-1957 (2013). https://doi.org/10.1109/LPT.2013.2276124.
  • [41] Rao, Y. J. & Jackson, D. A. Principles of Fiber-Optic Interfero-metry. in Optical Fiber Sensor Technology: Fundamentals (eds. Grattan, K. T. V. & Meggitt, B. T.) 167-192 (Springer, 2000).
  • [42] Culshaw, B. & Dakin, J. (eds.) Fiber-Optic Gyroscope. in Optical Fiber Sensors, Vol. 2: Systems and Applications. (Artech House, Boston London, 1989).
  • [43] Tunable LLD Light Source TSL-210-Operation Manual. Santec. http://www.photonics.byu.edu/santec.parts/TSL-210.pdf (accessed: 12/16/2023).
  • [44] Stasiewicz, K. A., Krajewski, R., Jaroszewicz, L. R., Kujawińska, M. & Świłło, R. Influence of the tapering process on optical fiber refractive index distribution changes along the structure. Opto-Electron. Rev. 18, 102-109 (2010). https://doi.org/10.2478/s11772-009-0030-y.
  • [45] Stasiewicz, K. A. & Musiał, J. E. Threshold temperature optical fibre sensors. Opt. Fiber Technol. 32, 111-118 (2016). https://doi.org/10.1016/j.yofte.2016.10.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-737c8845-b4c8-4648-9a3e-e59bc5d781f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.