PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of noise, a constant background, and bit depth on the phase retrieval of pure phase objects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current study, we investigate the effect of uniform white noise, Poisson noise and a constant background on the phase retrieval of pure phase objects. We also study the influence of the aforementioned factors on phase retrieval at different bit depths of intensity measurements. An algorithm called PhaseLift is used for phase retrieval as it requires a small number of modulating masks and can retrieve the phase of an object from sparse intensity measurements of low bit depth. A test object is modulated by eight random masks generated from a single mask and the phase of the object is retrieved from coded diffraction patterns. Different levels of uniform white noise, Poisson noise and constant background are superimposed on the diffraction patterns and the root-mean-square error (RMSE) of the retrieved object is calculated at each level. The results suggest that Poisson noise and a constant background at the same level cause similar RMSE compared to uniform white noise. Lowering the bit depth from 18-bits to 14-bits resulted in the decrease of the RMSE caused by Poisson noise and a constant background. We conclude that the effects of noise and constant background can be reduced by lowering the bit depth.
Słowa kluczowe
Czasopismo
Rocznik
Strony
257--269
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga, Latvia, LV-1063
  • Department of Optometry and Vision Science, Faculty of Physics and Mathematics, and Optometry, University of Latvia, Jelgavas street 1, Riga, Latvia, LV-1004
  • Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga, Latvia, LV-1063
  • Department of Optometry and Vision Science, Faculty of Physics and Mathematics, and Optometry, University of Latvia, Jelgavas street 1, Riga, Latvia, LV-1004
Bibliografia
  • [1] SHECHTMAN Y., ELDAR Y.C., COHEN O., CHAPMAN H.N., MIAO J., SEGEV M., Phase retrieval with application to optical imaging: a contemporary overview, IEEE Signal Processing Magazine 32(3), 2015, pp. 87–109, DOI:10.1109/MSP.2014.2352673.
  • [2] HARRISON R.W., Phase problem in crystallography, Journal of the Optical Society of America A 10(5), 1993, pp. 1046–1055, DOI:10.1364/JOSAA.10.001046.
  • [3] DAINTY J.C. [Ed.], Laser Speckle and Related Phenomena, Springer, Berlin, Heidelberg, 1975, pp. 255–280.
  • [4] BARMHERZIG D.A., SUN J., LI P.-N., LANE T.J., CANDÈS E.J., Holographic phase retrieval and reference design, Inverse Problems 35(9), 2019, article 094001, DOI:10.1088/1361-6420/ab23d1.
  • [5] SHEVKUNOV I., KATKOVNIK V., PETROV N.V., EGIAZARIAN K., Super-resolution microscopy for biological specimens: lensless phase retrieval in noisy conditions, Biomedical Optics Express 9(11), 2018, pp. 5511–5523, DOI:10.1364/BOE.9.005511.
  • [6] LATYCHEVSKAIA T., Iterative phase retrieval in coherent diffractive imaging: practical issues, Applied Optics 57(25), 2018, pp. 7187–7197, DOI:10.1364/AO.57.007187.
  • [7] SZAMEIT A., SHECHTMAN Y., OSHEROVICH E., BULLKICH E., SIDORENKO P., DANA H., STEINER S., KLEY E.B., GAZIT S., COHEN-HYAMS T., SHOHAM S., ZIBULEVSKY M., YAVNEH I., ELDAR Y.C., COHEN O., SEGEV M., Sparsity-based single-shot subwavelength coherent diffractive imaging, Nature Materials 11(5), 2012, pp. 455–459, DOI:10.1038/nmat3289.
  • [8] KATKOVNIK V., EGIAZARIAN K., Sparse superresolution phase retrieval from phase-coded noisy intensity patterns, Optical Engineering 56(9), 2017, article 094103, DOI:10.1117/1.OE.56.9.094103.
  • [9] GERCHBERG R.W., SAXTON W.O., A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35(2), 1972, pp. 237–246.
  • [10] FIENUP J.R., Phase retrieval algorithms: a comparison, Applied Optics 21(15), 1982, pp. 2758–2769, DOI:10.1364/AO.21.002758.
  • [11] ZHANG C., WANG M., CHEN Q., WANG D., WEI S., Two-step phase retrieval algorithm using single-intensity measurement, International Journal of Optics, Vol. 2018, 2018, article 8643819, DOI:10.1155/2018/8643819.
  • [12] TEAGUE M.R., Deterministic phase retrieval: a Green’s function solution, Journal of the Optical Society of America 73(11), 1983, pp. 1434–1441, DOI:10.1364/JOSA.73.001434.
  • [13] CANDÈS E.J., ELDAR Y.C., STROHMER T., VORONINSKI V., Phase retrieval via matrix completion, SIAM Journal on Imaging Sciences 6(1), 2013, pp. 199–225, DOI:10.1137/110848074.
  • [14] CANDÈS E.J., LI X., SOLTANOLKOTABI M., Phase retrieval from coded diffraction patterns, Applied and Computational Harmonic Analysis 39(2), 2015, pp. 277–299, DOI:10.1016/j.acha.2014.09.004.
  • [15] WALDSPURGER I., D’ASPREMONT A., MALLAT S., Phase recovery, MaxCut and complex semidefinite programming, Mathematical Programming 149(1–2), 2015, pp. 47–81, DOI:10.1007/s10107-013-0738-9.
  • [16] HUANG W., GALLIVAN K.A., ZHANG X., Solving PhaseLift by low-rank Riemannian optimization methods for complex semidefinite constraints, SIAM Journal on Scientific Computing 39(5), 2017, pp. B840–B859, DOI:10.1137/16M1072838.
  • [17] SHECHTMAN Y., BECK A., ELDAR Y.C., GESPAR: efficient phase retrieval of sparse signals, IEEE Transactions on Signal Processing 62(4), 2014, pp. 928–938, DOI:10.1109/TSP.2013.2297687.
  • [18] CHEREMKHIN P.A., KRASNOV V.V., KURBATOVA E.A., RODIN V.G., STARIKOV S.N., Estimation of number of resolvable signal levels of photo- and videocameras, Journal of Physics: Conference Series 536(1), 2014, article 012023, DOI:10.1088/1742-6596/536/1/012023.
  • [19] SEABERG M.H., D’ASPREMONT A., TURNER J.J., Coherent diffractive imaging using randomly coded masks, Applied Physics Letters 107(23), 2015, article 231103, DOI:10.1063/1.4937122.
  • [20] KARITANS V., NITISS E., TOKMAKOVS A., OZOLINSH M., LOGINA S., Optical phase retrieval using four rotated versions of a single binary amplitude modulating mask, Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 2019, article 039004, DOI:10.1117/1.JATIS.5.3.039004.
  • [21] BROUK I., NEMIROVSKY A., NEMIROVSKY Y., Analysis of noise in CMOS image sensor, Proceedings of the 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, May 13–14, 2008, Tel-Aviv, Israel, IEEE, 4562800, DOI:10.1109/COMCAS.2008.4562800.
  • [22] BOYAT A.K., JOSHI B.K., A review paper: noise models in digital image processing, Signal & Image Processing: An International Journal 6(2), 2015, pp. 63–75.
  • [23] MIGUKIN A., AGOUR M., KATKOVNIK V., Phase retrieval in 4f optical system: background compensation and sparse regularization of object with binary amplitude, Applied Optics 52(1), 2013, pp. A269–A280, DOI:10.1364/AO.52.00A269.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-737c14cd-be33-4fc9-9c68-d72be046a996
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.