PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Determining the parameters of arable land fragmentation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unfavorable spatial structure of arable land located in Małopolska is a major obstacle in conducting agricultural activity. Arable lands located in the southern part of Małopolska are fragmented, have small area, and irregular shapes. Agricultural activity on land with an unfavorable spatial structure is associated with an increase in production costs, which directly results in lower income of farms. One of the methods of improving spatial conditions is to implement land consolidation works. They allow to organize the spatial structure, increase the area of agriculturally used parcels, while reducing their number. The article presents a new approach in determining the parameters of land fragmentation. GIS tools were used to identify areas with unfavorable spatial parameters. The methodology which allows for the processing, filtration of source data, determination and visualization of land fragmentation parameters is discussed. As part of the research, the Binning method was used, which allows to visualize the phenomenon and simultaneously reduce the data used. In the work, a detailed assessment of land fragmentation parameters was made, which can be used in agricultural land management works. Analyzes have shown that the southern areas of the Nowy Targ County are characterized by intensive fragmentation of arable land. There are also unfavorable parameters related to the elongation and shape of parcels in the discussed areas.
Rocznik
Strony
163--176
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • University of Agriculture in Krakow Department of Agricultural Land Surveying, Cadaster and Photogrammetry ul. Balicka 253a, 30-198 Krakow
Bibliografia
  • [1] Adamczyk, J. and Tiede, D. (2017). ZonalMetrics – a Python toolbox for zonal landscape structure analysis. Computers and Geosciences, 99, 91–99. DOI: 10.1016/j.cageo.2016.11.005.
  • [2] Birch, C. P. D., Oom, S. P. and Beecham, J. A. (2007). Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological Modelling, 206, 347–359. DOI: 10.1016/j.ecolmodel.2007.03.041.
  • [3] Bozek, P. and Janus, J. (2017). The Influence of Elevation Data Generalization on the Accuracy of the RUSLE Model. In: Proceedings of the 2017 Baltic Geodetic Congress (Geomatics), 374–377. DOI: 10.1109/BGC.Geomatics.2017.46.
  • [4] Bozek, P., Janus, J. and Klapa, P. (2018). Influence of canopy height model methodology on determining abandoned agricultural areas. Proceedings of the Engineering for Rural Development, 17, 795–800. DOI: 10.22616/ERDev2018.17.N467.
  • [5] Cegielska, K., Noszczyk, [5] T., Kukulska, A., Szylar, M., Hernik, J., Dixon-Gough, R., Jombach S., Valánszki, I. and Kovács K.F. (2018). Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy, 78, 1–18. DOI: 10.1016/j.landusepol.2018.06.017.
  • [6] Demetriou, D., See, L., and Stillwell, J. (2013). A parcel shape index for use in land consolidation planning. Transactions in GIS, 17, 861–882. DOI: 10.1111/j.1467-9671.2012.01371.x.
  • [7] Demetriou, D. (2018). Automating the land valuation process carried out in land consolidation schemes’. Land Use Policy, 75, 21–32. DOI: 10.1016/j.landusepol.2018.02.049.
  • [8] Dunkel, A. (2015). Visualizing the perceived environment using crowdsourced photo geodata. Landscape and Urban Planning, 142, 173–186. DOI: 10.1016/j.landurbplan.2015.02.022.
  • [9] Gniadek, J. (2010). Land configuration changeability of plots land as exemplified by the village of Koniuszowa. Infrastructure and Ecology of Rural Areas, 6, 13–23. DOI: 10.1016/j.landusepol.2018.06.044.
  • [10] Gniadek, J. (2013). Ocena przestrzennego ukształtowania działek ró˙zniczan na przykładzie Msciwojowa. Polska Akademia Nauk, Oddział w Krakowie, 3/II/2013, 133–143.
  • [11] Gasiorowski, J. and Bielecka, E. (2014). Land fragmentation analysis using morphometric parameters. in Proceeding of the International Conference on Environmental Engineering. ICEE; 9, 1–7. DOI: 10.3846/enviro.2014.205.
  • [12] Harasimowicz, S., Janus J., Bacior S. and Gniadek, J. (2017). Shape and size of parcels and transport costs as a mixed integer programming problem in optimization of land consolidation. Computers and Electronics in Agriculture, 140, 113–122. DOI: 10.1016/j.compag.2017.05.035.
  • [13] Hiironen, J. and Riekkinen, K. (2016). Agricultural impacts and profitability of land consolidations. Land Use Policy, 55, 309–317. DOI: 10.1016/j.landusepol.2016.04.018.
  • [14] Janus, J. (2018). Measuring land fragmentation considering the shape of transportation network: A method to increase the accuracy of modeling the spatial structure of agriculture with case study in Poland. Computers and Electronics in Agriculture, 148, 259–271. DOI: 10.1016/j.compag.2018.03.016.
  • [15] Janus, J., Glowacka, A. and Bozek, P. (2016). Identification of Areas With Unfavorable Agriculture Development, in Proceedings of the Engineering for Rural Development, 1260–1265.
  • [16] Janus, J. and Zygmunt, M. (2016). MKSCAL – system for land consolidation project based on CAD platform. Geomatics, Landmanagement and Landscape, 2, 49–59. DOI: 10.15576/GLL/2016.2.49.
  • [17] Janus, J. and Bozek, P. (2018). Using ALS data to estimate afforestation and secondary forest succession on agricultural areas: An approach to improve the understanding of land abandonment causes. Applied Geography, 97, 128–141. DOI: 10.1016/j.apgeog.2018.06.002.
  • [18] Janus, J. and Markuszewska, I. (2019). Forty years later: Assessment of the long-lasting effectivenes of land consolidation projects. Land Use Policy, 83, 22–31. DOI: 10.1016/j.landusepol.2019.01.024.
  • [19] Kwinta, A. and Gniadek, J. (2017). The description of parcel geometry and its application in terms of land consolidation planning. Computers and Electronics in Agriculture, 136, 117–124. DOI: 10.1016/j.compag.2017.03.006.
  • [20] Len, P. (2018). An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas. Computers and Electronics in Agriculture, 144, 216–221. DOI: 10.1016/j.compag.2017.12.014.
  • [21] Liu, T. and Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography. 56, 42–54. DOI: 10.1016/j.apgeog.2014.10.002.
  • [22] Lu, H., Xie, H., He, Y., Wu, Z and Zhang, X. (2018). Assessing the impacts of land fragmentation and plot size on yields and costs: A translog production model and cost function approach. Agricultural Systems. DOI: 10.1016/j.agsy.2018.01.001.
  • [23] Muchová, Z. (2017). Assessment of land ownership fragmentation by multiple criteria. Survey Review, Taylor and Francis, 1–8. DOI: 10.1080/00396265.2017.1415663.
  • [24] Noga, K. (2005). Metodyka oceny struktury przestrzennej gruntów gospodarstw rolnych przed i po scaleniu. Scalenia gruntów podstawa˛ rozwoju obszarów wiejskich rozdrobnionego rolnictwa południowo wschodniej Polski. Zeszyty Towarzystwa Rozwoju Obszarów Wiejskich. Rzeszów, 5.
  • [25] Noszczyk, T. (2018). Human and Ecological Risk Assessment? An International a review of approaches to land use changes modeling. Human and Ecological Risk Assessment, 1–29. DOI: 10.1080/10807039.2018.1468994.
  • [26] Noszczyk, T., Rutkowska, A. and Hernik, J. (2017). Determining Changes in Land Use Structure in Małopolska Using Statistical Methods. Polish Journal of Environmental Studies, 26, 211–220. DOI: 10.15244/pjoes/64913.
  • [27] Oksanen, T. (2013). Shape-describing indices for agricultural field plots and their relationship to operational efficiency. Computers and Electronics in Agriculture, 98, 252–259. DOI: 10.1016/j.compag.2013.08.014.
  • [28] Pochwatka, P., Litwin, U., Teterycz, T. and Bitner, A., (2017). Cartographic Visualization in the Real Estate Market Investigation with the use of GIS Tools. In: Proceedings – 2017 Baltic Geodetic Congress (BGC Geomatics), 105–109. DOI: 10.1109/BGC.Geomatics.2017.53.
  • [29] Posiak, B. (2017). Necessary To Identify Water-Related Hazards in Rural Areas. Geomatics, Landmanagement and Landscape, 107–117. DOI: 10.15576/GLL/2017.3.107.
  • [30] Uyan, M. (2016). Determination of agricultural soil factor using geostatistical analysis and GIS on land consolidation projects: A case study in Konya/Turkey. Computers and Electronics in Agriculture, 123, 402–409. DOI: 10.1016/j.compag.2016.03.019.
  • [31] Verbesselt, J. (2015). Book review: Big Data: Techniques and Technologies in Geoinformatics. International Journal of Applied Earth Observation and Geoinformation, 35, 368–369. DOI: 10.1016/j.jag.2014.09.014.
  • [32] Woch, F. (2010). The current status and possible changes of extension of farms in Poland. Przegląd Geodezyjny, 9, 10–17.
  • [33] Woch, F. and Woch, R. (2014). Changes in Rural Areas Utilization in Poland. Infrastructure and Ecology of Rural Areas, 1, 111–124. DOI: 10.14597/infraeco.2014.1.1.009.
  • [34] Wojcik-Len, J., Sobolewska-Mikulska, K., Sajnog, N. and Len, P. (2018). The idea of rational management of problematic agricultural areas in the course of land consolidation. Land Use Policy, 78, 36–45. DOI: 10.1016/j.landusepol.2018.06.044.
  • [35] Zaremba, S. and Zon, J. (2007). Acquiring Cadastral Map Data for the Needs of LPIS System and Land and Building Cadastre Modernization. Roczniki Geomatyki, 5, 63–79.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73779daf-799b-403e-b915-68a58effaf39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.