Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A continuous effort of engineers is being striving to improve efficiency and reduce specific fuel consumption. High hope lies in pressure gain combustion field (PGC). The Humphrey ideal cycle delivers more than 10% higher efficiency than the Brytona-Joule cycle. The impact of the pressure ratio, adiabatic exponent, intercooling and heat regeneration was investigated in the paper. Engine efficiency according to analytical calculation reached 45%. The engine based on the Humphrey cycle can be realized as an pulse powered turbine engine. It should work according repeating cycle that consists of filling, combustion and exhaust. The cycle has to be controlled by the valve timing system. Due to the variable thermal parameters in the chamber, an effective expansion of the energy impulse required the nozzles with various ratio of outlet cross section to minimum cross-sectional. More precise efficiency estimation of pulse power turbine engine could be done by means of three dimensional numerical analysis with assumed geometry of valve timing design.
Czasopismo
Rocznik
Tom
Strony
27--37
Opis fizyczny
Bibliogr. 10 poz., wykr.
Twórcy
autor
- Warsaw University of Technology, Institute of Machine Design Fundamentals
Bibliografia
- 1. Akbari, P. and Nalim, R. (2009). Review of recent developments in wave rotor combustion technology. Journal of Propulsion and Power, 25(4):833–844.
- 2. Balicki, W., Korczewski, Z., and Szczeciński S. (2007). Obszary zastosowań i tendencje rozwojowe turbinowych silników spalinowych. Silniki Spalinowe, 46(3):3–15.
- 3. Kurec, K., Piechna, J., and Müller, N. (2014). Numerical investigation of the micro radial disk internal combustion engine. Archivum Combustionis, 34(1):1–26.
- 4. Labarrere, L., Poinsot, T., Dauptain, A., Duchaine, F., Bellenoue, M., and Boust, B. (2016). Experimental and numerical study of cyclic variations in a constant volume combustion chamber. Combustion and Flame, 172:49–61.
- 5. Nalim, Razi andAkbari, P. and Mueller, N. (2006). A review of wave rotor technology and its applications. Journal of Engineering for Gas Turbines and Power, 128(4):717–735.
- 6. Nkoi, B., Pilidis, P., and Nikolaidis, T. (2013). Performance assessment of simple and modified cycle turboshaft gas turbines. Propulsion and Power Research, 2(2):96–106.
- 7. Piechna, J. (2014). Micro ring-engine numerical fluid dynamics analysis. Archivum Combustionis, 34(1):1–26.
- 8. Postrzednik, S. (2006). Termodynamika zjawisk przepływowych. Wydawnictwo Politechniki Śląskiej, Gliwice.
- 9. Richards, G. (2012). New developments in combustion technology-part ii: Step change in efficiency. Princeton, NJ, US.
- 10. Szargut, J. (1991). Termodynamika techniczna. PWN.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-737492e8-388a-44f2-beb6-83b988ea14a9