PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooling of High Heat Flux Flat Surface with Nanofluid Assisted Convective Loop. Experimental Assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental investigation was conducted on the thermal performance and pressure drop of a convective cooling loop working with ZnO aqueous nanofluids. The loop was used to cool a flat heater connected to an AC autotransformer. Influence of different operating parameters, such as fluid flow rate and mass concentration of nanofluid on surface temperature of heater, pressure drop, friction factor and overall heat transfer coefficient was investigated and briefly discussed. Results of this study showed that, despite a penalty for pressure drop, ZnO/water nanofluid was a promising coolant for cooling the micro-electronic devices and chipsets. It was also found that there is an optimum for concentration of nanofluid so that the heat transfer coefficient is maximum, which was wt. % = 0.3 for ZnO/water used in this research. In addition, presence of nanoparticles enhanced the friction factor and pressure drop as well; however, it is not very significant in comparison with those of registered for the base fluid.
Rocznik
Strony
519--531
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab.
Twórcy
autor
  • School of Engineering and Technology, Purdue University, IUPUI, Indianapolis, USA
autor
  • Lamar University, Department of Mechanical Engineering, Beaumont, TX 77710, USA
autor
  • Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
  • Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
Bibliografia
  • [1] S.E. Ghasemi, A.A. Ranjbar, and M.J. Hosseini. Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study. Journal of Molecular Liquids, 248:264–270, 2017. doi: 10.1016/j.molliq.2017.10.062.
  • [2] M.M. Sarafraz, A. Arya, F. Hormozi, and V. Nikkhah. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study. Applied Thermal Engineering, 112:1373–1381, 2017. doi: 10.1016/j.applthermaleng.2016.10.196.
  • [3] M. Nazari, M. Karami, and M. Ashouri. Comparing the thermal performance of water, ethylene glycol, alumina and CNT nanofluids in CPU cooling: Experimental study. Experimental Thermal and Fluid Science, 57:371–377, 2014. doi: 10.1016/j.expthermflusci.2014.06.003.
  • [4] S.E. Ghasemi, A.A. Ranjbar, and M.J. Hosseini. Experimental and numerical investigation of circular minichannel heat sinks with various hydraulic diameter for electronic cooling application. Microelectronics Reliability, 73:97–105, 2017. doi: 10.1016/j.microrel.2017.04.028.
  • [5] H.M. Hu, T.S. Ge, Y.J. Dai, and R.Z. Wang. Experimental study on water-cooled thermoelectric cooler for CPU under severe environment. International Journal of Refrigeration, 62:30–38, 2016. doi: 10.1016/j.ijrefrig.2015.10.015.
  • [6] M. Rafati, A.A. Hamidi, and M.S. Niaser. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Applied Thermal Engineering, 45:9–14, 2012. doi: 10.1016/j.applthermaleng.2012.03.028.
  • [7] M.M. Sarafraz and S.M. Peyghambarzadeh. Nucleate pool boiling heat transfer to Al2O3-water and TiO2-water nanofluids on horizontal smooth tubes with dissimilar homogeneous materials. Chemical and Biochemical Engineering Quarterly, 26(3):199–206, 2012. http://hrcak.srce.hr/87353.
  • [8] M.M. Sarafraz and F. Hormozi. Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina–glycol based nanofluids. Powder Technology, 266:378–387, 2014. doi: 10.1016/j.powtec.2014.06.053.
  • [9] M. Kamalgharibi, F. Hormozi, S.A.H. Zamzamian, and M.M. Sarafraz. Experimental studies on the stability of cuo nanoparticles dispersed in different base fluids: influence of stirring, sonication and surface active agents. Heat and Mass Transfer, 52(1):55–62, 2016.
  • [10] M.M. Sarafraz, F. Hormozi, and M. Kamalgharibi. Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat and Mass Transfer, 50(9):1237–1249, 2014. doi: 10.1007/s00231-014-1336-y.
  • [11] M.M. Sarafraz and F. Hormozi. Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids. Powder Technology, 287:412–430, 2016. doi: 10.1016/j.powtec.2015.10.022.
  • [12] M.M. Sarafraz and F. Hormozi. Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Experimental Thermal and Fluid Science, 66:279–289, 2015. 10.1016/j.expthermflusci.2015.03.028.
  • [13] M.M. Sarafraz, F. Hormozi, and S.M. Peyghambarzadeh. Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. International Communications in Heat and Mass Transfer, 57:297–303, 2014. doi: 10.1016/j.icheatmasstransfer.2014.08.020.
  • [14] M.M. Sarafraz, T. Kiani, and F. Hormozi. Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. International Communications in Heat and Mass Transfer, 70:75–83, 2016. doi: 10.1016/j.icheatmasstransfer.2015.12.008.
  • [15] M.M. Sarafraz and F. Hormozi. Heat transfer, pressure drop and fouling studies of multi-walled carbon nanotube nano-fluids inside a plate heat exchanger. Experimental Thermal and Fluid Science, 72:1–11, 2016. doi: 10.1016/j.expthermflusci.2015.11.004.
  • [16] M.M. Sarafraz and F. Hormozi. Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. International Journal of Thermal Sciences, 100:255–266, 2016. doi: 10.1016/j.ijthermalsci.2015.10.006.
  • [17] M.M. Sarafraz, F. Hormozi, and S.M. Peyghambarzadeh. Pool boiling heat transfer to aqueous alumina nano-fluids on the plain and concentric circular micro-structured (CCM) surfaces. Experimental Thermal and Fluid Science, 72:125–139, 2016. doi: 10.1016/j.expthermflusci.2015.11.001.
  • [18] M.M. Sarafraz, F. Hormozi, and V. Nikkhah. Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Experimental Thermal and Fluid Science, 78:41–49, 2016. doi: 10.1016/j.expthermflusci.2016.05.014.
  • [19] M.M. Sarafraz, F. Hormozi, and S.M. Peyghambarzadeh. Role of nanofluid fouling on thermal performance of a thermosyphon: Are nanofluids reliable working fluid? Applied Thermal Engineering, 82:212–224, 2015. doi: 10.1016/j.applthermaleng.2015.02.070.
  • [20] S.M. Peyghambarzadeh, M.M. Sarafraz, N. Vaeli, E. Ameri, A. Vatani, and M. Jamialahmadi. Forced convective and subcooled flow boiling heat transfer to pure water and nheptane in an annular heat exchanger. Annals of Nuclear Energy, 53:401–410, 2013. doi: 10.1016/j.anucene.2012.07.037.
  • [21] M.M. Sarafraz, S.M. Peyghambarzadeh, and N. Vaeli. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chemical Industry and Chemical Engineering Quarterly, 18(2):315–327, 2012. doi: 10.2298/CICEQ111020008S.
  • [22] M.M. Sarafraz. Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat and Mass Transfer, 48(4):611–619, 2012. doi: 10.1007/s00231-011-0910-9.
  • [23] M.M. Sarafraz, S.M. Peyghambarzadeh, and S.A. Alavifazel. Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemical reactions around the smoothed horizontal cylinder. Heat and Mass Transfer, 48(10):1755–1765, 2012. doi: 10.1007/s00231-012-1019-5.
  • [24] E. Salari, S.M. Peyghambarzadeh, M.M. Sarafraz, and F. Hormozi. Boiling thermal performance of tio2 aqueous nanofluids as a coolant on a disc copper block. Periodica Polytechnica. Chemical Engineering, 60(2):106–122, 2016.
  • [25] M.M. Sarafraz. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. Journal of Applied Fluid Mechanics, 6(1):73–79, 2013.
  • [26] M.M. Sarafraz and S.M. Peyghambarzadeh. Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures. International Communications in Heat and Mass Transfer, 39(8):1303–1310, 2012. doi: 10.1016/j.icheatmasstransfer.2012.06.020.
  • [27] M.H. Al-Rashed, G. Dzido, M. Korpys, J. Smołka, and J. Wójcik. Investigation on the cpu nanofluid cooling. Microelectronics Reliability, 63:159–165, 2016. doi: 10.1016/j.microrel.2016.06.016.
  • [28] S.J. Kline and F.A. McClintock. Describing uncertainties in single-sample experiments. Mechanical Engineering, 75:3–8, 1953.
  • [29] R.K. Shah and A.L. London. Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic Press, 2014.
  • [30] T.L. Bergman and F.P. Incropera. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 2011.
  • [31] W. Duangthongsuk and S. Wongwises. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 52(7):2059–2067, 2009. doi: 10.1016/j.ijheatmasstransfer.2008.10.023.
  • [32] R.S. Vajjha, D.K. Das, and D.P. Kulkarni. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. International Journal of Heat and Mass Transfer, 53(21):4607–4618, 2010. doi: 10.1016/j.ijheatmasstransfer.2010.06.032.
  • [33] M. Chandrasekar, S. Suresh, and A.C. Bose. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Experimental Thermal and Fluid Science, 34(2):122–130, 2010. doi: 10.1016/j.expthermflusci.2009.10.001.
Uwagi
EN
1. The authors of this work tend to appreciate Iran Nanotechnology Initiative Council for their financial supports.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73731932-0195-47f6-bcfd-1ea1a00b1381
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.