PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental verification of similarity criteria for sound absorption of simple metamaterials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the dimensional analysis of simple acoustic metamaterials and its experimental verification in a computer model. Due to their decreased thickness possible because of the thermoviscous losses and sound dispersion that occur in acoustic metamaterials, such structures are gaining popularity, both as sound absorbers and diffusers. This implies the need to find their equivalents to be used at scale - both for modeling interiors with metamaterials and developing more complicated structures. The paper discusses the dimensional analysis performed for a generalized unit cell of a metamaterial with a resonator. The dimensional analysis shows the need for scaling both the geometrical dimensions of the structure and the parameters of the medium - air. The dimensional analysis was derived based on the transfer matrix method and was proven correct with the finite element method model. The paper also discusses the consequences of neglecting the air criteria, which are impossible to be fulfilled. This opens the question of finding new criterial numbers allowing the correct reflection of acoustic metamaterials at scale.
Rocznik
Strony
art. no. 2022211
Opis fizyczny
Bibliogr. 18 poz., 1 il. wykr.
Twórcy
Bibliografia
  • 1. Y. Ding, Z. Liu, C. Qiu, J. Shi; Metamaterial with simultaneously negative bulk modulus and mass density; Phys. Rev. Lett. 2007, 99(9), 093904.
  • 2. J.-P. Groby, W. Huang, A. Lardeau, Y. Aurégan; The use of slow waves to design simple sound absorbing materials; J. Appl. Phys. 2015, 117(12), 124903.
  • 3. M.M. Sigalas, E.N. Economou; Elastic and acoustic wave band structure; J. Sound Vib. 1992, 158(2), 377-382.
  • 4. G. Ma, M. Yang, S. Xiao, Z. Yang, P. Sheng; Acoustic metasurface with hybrid resonances; Nature Mater 2014, 13(9), 873-878.
  • 5. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani; Acoustic band structure of periodic elastic composites; Phys. Rev. Lett. 1993, 71(13), 2022-2025.
  • 6. N. Jiménez, V. Romero-García, V. Pagneux, J.P. Groby; Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems; Sci. Rep. 2017, 7, 13595.
  • 7. S. Huang, X. Fang, X. Wang, B. Assouar, Q. Cheng, Y. Li; Acoustic perfect absorbers via spiral metasurfaces with embedded apertures; Appl. Phys. Lett. 2018, 113(23), 233501.
  • 8. Y. Tang, S. Ren, H. Meng, F. Xin, L. Huang, T. Chen, et al.; Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound; Sci. Rep. 2017, 7, 43340.
  • 9. N. Jiménez, W. Huang, V. Romero-García, V. Pagneux, J.P. Groby; Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption; Appl. Phys. Lett. 2016, 109, 121902.
  • 10. N. Jiménez, T.J. Cox, V. Romero-García, J.-P. Groby; Metadiffusers: Deep-subwavelength sound diffusers; Sci. Rep. 2017, 7, 5389.
  • 11. N. Jiménez, J.P. Groby, V. Romero-García; Acoustic waves in periodic structures, metamaterials, and porous media; Springer: Cham, Germany, 2021.
  • 12. A. Dell, A. Krynkin, K. V Horoshenkov; The use of the transfer matrix method to predict the effective fluid properties of acoustical systems; Appl. Acoust. 2021, 182, 108259.
  • 13. M.R. Stinson; The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape; J. Acoust. Soc. Am. 1991, 89(2), 550-558.
  • 14. J. Kergomard, A. Garcia; Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae; J. Sound Vib. 1987, 114(3), 465-479.
  • 15. J.D. Polack, A.H. Marshall, G. Dodd; Digital evaluation of the acoustics of small models: The MIDAS package; J. Acoust. Soc. Am. 1989, 85(1), 185-193.
  • 16. E. Buckingham; On physically similar systems; illustrations of the use of dimensional equations; Phys. Rev. 1914, 4(4), 345.
  • 17. S. Wójcicki; Zasady eksperymentu; Wydawnictwo Ministerstwa Obrony Narodowej: Warsaw, Poland, 1964.
  • 18. C. Oleśkowicz-Popiel, J. Wojtkowiak; Wpływ temperatury, ciśnienia i wilgotności na gęstość i lepkość powietrza; Ciepłownictwo, Ogrzewnictwo, Wentylacja 2004, 35(1), 15-20.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73729251-d9a4-4727-9b22-407cccf9c7f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.