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Abstract The paper concerns the dimensional analysis of simple acoustic metamaterials and its 
experimental verification in a computer model. Due to their decreased thickness possible because of the 
thermoviscous losses and sound dispersion that occur in acoustic metamaterials, such structures are 
gaining popularity, both as sound absorbers and diffusers. This implies the need to find their equivalents to 
be used at scale – both for modeling interiors with metamaterials and developing more complicated 
structures. The paper discusses the dimensional analysis performed for a generalized unit cell of  
a metamaterial with a resonator. The dimensional analysis shows the need for scaling both the geometrical 
dimensions of the structure and the parameters of the medium – air. The dimensional analysis was derived 
based on the transfer matrix method and was proven correct with the finite element method model. The 
paper also discusses the consequences of neglecting the air criteria, which are impossible to be fulfilled. 
This opens the question of finding new criterial numbers allowing the correct reflection of acoustic 
metamaterials at scale.  
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1. Introduction 

Acoustic metamaterials are structures that due to their construction present unusual properties, such as 
negative bulk modulus or negative mass density [1, 2] which translates into desired values of acoustic 
parameters, such as high sound absorption coefficient, sound diffusion, or transmission loss. The concept 
of metamaterials was translated into acoustics from electromagnetics in the 1990s – a photonic crystal was 
translated into a phononic crystal and presented frequency band gaps [3]. Since then, the development of 
acoustic metamaterials has begun and now different types of metamaterials are being investigated, such as 
membrane-type acoustic metamaterials [4], metamaterials with a periodic distribution of scatterers, i.e., 
phononic crystals [5], metamaterials with volumetric scatterers, such as Helmholtz resonators or quarter-
wavelength resonators [6, 7], or complex hybrid metamaterials [8]. This paper concerns acoustic 
metamaterials with volumetric resonators, working as sound absorbers or diffusers, such as the ones 
described in [6, 9, 10]. The advantage of metamaterial structures over classic sound absorbers and diffusers, 
such as porous absorbers or QR diffusers is the reduction of their thickness. Due to the sound dispersion, 
metamaterials work in a subwavelength frequency regime. This makes us expect that in a short time after 
the manufacturing technology is developed, acoustic metamaterials will become more and more popular in 
architectural acoustics. Therefore, there arises the need to find a way for scaling acoustic metamaterials to 
be used in scale models of the designed interiors.  

This paper concerns sound absorbing properties of acoustic metamaterials, so the dimensional analysis 
is performed for the sound absorption coefficient. A classic dimensional analysis is presented, and criterial 
numbers are derived for the elementary unit cells. The performed analysis is then verified with the use of 
the mathematical model and finite element method modeling. Next, it is shown that not all the criterial 
numbers derived in the classical dimensional analysis are possible to be realized in a real-life scenario, so 
the results of neglecting the unrealistic similarity criteria are investigated. 
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2. Acoustic metamaterials with volumetric scatterers 

Acoustic metamaterials with volumetric scatterers (resonators) vary in terms of construction. Most often 
a unit cell is built of a Helmholtz resonator [7] or slits or ducts loaded with resonators [9]. The effectiveness 
of such structures can be assessed with different computational methods; the most popular being the plane 
wave expansion method (PWE), multiple scattering theory (MST), transfer matrix method (TMM), and finite 
element method modeling (FEM) [11]. In this paper, two of them were employed: TMM and FEM. The 
mathematical model TMM was used for the dimensional analysis, and FEM modeling was used for the 
verifications of the results. The transfer matrix method works for the low-frequency regime – only for  
a plane wave propagating in the system. Usually, this restriction is not an issue since metamaterials are 
specially designed for low frequencies. 

2.1. Transfer Matrix Method 

Transfer Matrix Method (TMM) has been widely used in the literature to describe wave propagation in 
phononic crystals and acoustic metamaterials [12, 6]. It describes effectively sound dispersion and acoustic 
properties of the structures, such as reflection and transmission, leading to the typically used parameters, 
such as sound absorption coefficient, sound diffusion, scattering, and transmission loss. The method can be 
used to derive effective parameters of resonant structures, but also more complicated, multi-layered 
systems, including layers loaded with resonators (including the thermoviscous phenomena observed in 
ducts and slits), porous materials, microperforated plates, and membranes. Together with low 
computational costs, it is a perfect tool for the analysis and design of acoustic metamaterials. 

The transfer matrix method provides the relationship between the initial sound pressure 𝑝𝑝 and acoustic 
velocity 𝑣𝑣 at the start (𝑥𝑥 = 0) and at the end (𝑥𝑥 = 𝐿𝐿) of the modelled system. A transfer matrix takes the 
general form of: 

�𝑝𝑝𝑣𝑣�  𝑥𝑥=0 = 𝐓𝐓 �𝑝𝑝𝑣𝑣�  𝑥𝑥=𝐿𝐿 =  �𝑇𝑇11 𝑇𝑇12
𝑇𝑇21 𝑇𝑇22

� �𝑝𝑝𝑣𝑣�𝑥𝑥=𝐿𝐿
. (1) 

In the case of a multi-layered system, e.g., a duct loaded with resonators, the matrix T is the product of 
the transfer matrixes for 𝑀𝑀 subsequent layers: 

𝐓𝐓 =  �𝐓𝐓(𝑚𝑚).
𝑀𝑀

𝑚𝑚=1

 (2) 

The form of a single transfer matrix depends on the type of the element and the connection between the 
elements. For a continuous fluid layer, such as a duct, slit, or a fluid layer, the transfer matrix takes the form 
of: 

𝐓𝐓 = �
cos𝑘𝑘eff𝑙𝑙𝑚𝑚 𝑖𝑖𝑍𝑍eff sin 𝑘𝑘eff𝑙𝑙𝑚𝑚

𝑖𝑖
𝑍𝑍eff� sin𝑘𝑘eff𝑙𝑙𝑚𝑚 cos𝑘𝑘eff𝑙𝑙𝑚𝑚

�, (3) 

where 𝑘𝑘eff is the effective wave number in the layer, 𝑙𝑙𝑚𝑚 is the length of the layer, and 𝑍𝑍eff is the effective 
characteristic impedance of the medium. A point element in-series (e.g., a change of a cross-section, 
radiation of a waveguide in the free air) is accounted for as: 

𝐓𝐓 = �1 𝑍𝑍eff
0 1 �, (4) 

and a point element in parallel (e.g., a quarter-wavelength resonator or a Helmholtz resonator loaded in 
parallel): 

𝐓𝐓 = � 1 0
1/𝑍𝑍eff 1�. (5) 

For a rigidly backed acoustic panel, which is usually the case for sound absorbers and diffusers, sound 
reflection coefficient 𝑅𝑅 can be derived from the transfer matrix as: 

𝑅𝑅 =
𝑇𝑇11 − 𝑍𝑍0𝑇𝑇21
𝑇𝑇11 + 𝑍𝑍0𝑇𝑇21

, (6) 

where 𝑍𝑍0 = 𝜌𝜌0𝑐𝑐 is the characteristic impedance of the surrounding medium (typically air), where 𝜌𝜌0 is the 
air density and  𝑐𝑐 – the speed of sound. Sound absorption coefficient 𝛼𝛼 is then defined as:   

𝛼𝛼 = 1 − |𝑅𝑅|2. (7) 

https://www.sciencedirect.com/topics/physics-and-astronomy/transfer-matrix-method
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2.2. Effective parameters 

For narrow ducts and slits, it is necessary to account for the viscothermal losses. It is done by evaluating 
complex and frequency-dependent density 𝜌𝜌eff and bulk modulus 𝜅𝜅eff for each segment of the metamaterial 
structure. For ducts and slits of a constant cross-section Stinson [13] gave the following formulas: for a slit: 

𝜌𝜌eff =  𝜌𝜌0 �1 −
tanh�𝑟𝑟𝐺𝐺𝜌𝜌�

𝑟𝑟𝐺𝐺𝜌𝜌
�
−1

, (8) 

𝜅𝜅eff =  𝜅𝜅0 �1 − (𝛾𝛾 − 1) tanh(𝑟𝑟𝐺𝐺𝜅𝜅)
𝑟𝑟𝐺𝐺𝜅𝜅

�
−1

, (9) 

where 𝜌𝜌0 is the equilibrium density of the medium, 2𝑟𝑟 is the width of the slit, 𝜅𝜅0 = 𝛾𝛾𝑃𝑃0, with 𝛾𝛾 = 1.4 being 
the heat capacity ratio, and 𝑃𝑃0 static pressure; 𝐺𝐺𝜌𝜌 =  �𝑖𝑖𝑖𝑖𝜌𝜌0/𝜂𝜂 , 𝐺𝐺𝜅𝜅 =  �𝑖𝑖𝑖𝑖Pr𝜌𝜌0/𝜂𝜂, with Prandtl number 𝑃𝑃𝑟𝑟 =
0.71, and dynamic viscosity of air 𝜂𝜂 = 1,813 ∙ 10−5 kg

ms
. 

For a circular duct of radius 𝑟𝑟: 

𝜌𝜌eff =  𝜌𝜌0 �1 −  
2𝐽𝐽1(𝑟𝑟𝐺𝐺𝜌𝜌)
𝑟𝑟𝐺𝐺𝜌𝜌𝐽𝐽0(𝑟𝑟𝐺𝐺𝜌𝜌)

�, (10) 

𝜅𝜅eff =  𝜅𝜅0 �1 + (𝛾𝛾 − 1)
2𝐽𝐽1(𝑟𝑟𝐺𝐺𝜅𝜅)
𝑟𝑟𝐺𝐺𝜅𝜅𝐽𝐽0(𝑟𝑟𝐺𝐺𝜅𝜅)

�, (11) 

where 𝐽𝐽0 and 𝐽𝐽1 are Bessel functions of the first kind and order 0 and 1, 𝐺𝐺𝜌𝜌 =  �−𝑖𝑖𝑖𝑖𝜌𝜌0/𝜂𝜂, 𝐺𝐺𝜅𝜅 =  �−𝑖𝑖𝑖𝑖Pr𝜌𝜌0/𝜂𝜂, 
the other symbols as described above. 

For a rectangular duct of width 2𝑎𝑎 and height 2𝑏𝑏: 

𝜌𝜌eff =  −
𝜌𝜌0𝑎𝑎2𝑏𝑏2

4𝐺𝐺𝜌𝜌2 ∑ ∑ �𝛼𝛼𝑘𝑘2𝛽𝛽𝑚𝑚2 (𝛼𝛼2𝛽𝛽2 − 𝐺𝐺𝜌𝜌2)�−1∞
𝑚𝑚=0

∞
𝑘𝑘=0

, (12) 

𝜅𝜅eff =  
𝜅𝜅0

𝛾𝛾 + 4(𝛾𝛾 − 1)𝐺𝐺𝜅𝜅2/𝑎𝑎2𝑏𝑏2 ∑ ∑ �𝛼𝛼𝑘𝑘2𝛽𝛽𝑚𝑚2 (𝛼𝛼2𝛽𝛽2 − 𝐺𝐺𝜌𝜌2)�−1∞
𝑚𝑚=0

∞
𝑘𝑘=0

, (13) 

where 𝛼𝛼𝑘𝑘 = �𝑘𝑘 + 1
2
� 𝜋𝜋/𝑎𝑎,  𝛽𝛽𝑚𝑚 = �𝑚𝑚 + 1

2
� 𝜋𝜋/𝑏𝑏, remaining symbols as for a circular duct. Effective wave 

number 𝑘𝑘eff and effective characteristic impedance 𝑍𝑍eff can be calculated as: 

𝑘𝑘eff =  𝜔𝜔�𝜌𝜌eff𝜅𝜅eff, (14) 

𝑍𝑍eff =  
𝑆𝑆0
𝑆𝑆𝑎𝑎
�
𝜌𝜌eff
𝜅𝜅eff

, (15) 

where 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 is the angular frequency, where 𝑓𝑓 – considered frequency,  𝑆𝑆0 is the area of the unit cell and 
𝑆𝑆𝑎𝑎 is the area of the duct (in the case of a slit – areas are replaced by linear dimensions). For more accurate 
calculations, the corrections for a change of the cross-section and radiation to the free air may be included 
according to [14]. These corrections depend on the ratio of hydraulic diameters of the ducts and the open 
area of the top layer, i.e., the geometry of the structure. Any combination of ducts and slits constituting the 
acoustic metamaterial can be described as the product of the building blocks characterized above. 
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3. Dimensional analysis 

Finding a scaled equivalent of a structure means finding such a structure, that at scale 1:S presents the same 
acoustic properties as its full-size equivalent in a shifted frequency range (S times higher) [15]. In this paper, 
the sound absorption coefficient is considered. According to the Buckingham π theorem, a system can be 
described by a set of non-dimensional criterial numbers. If two systems: full-size one and scaled one have 
the same criterial numbers, they can be considered similar, and the conclusions made for one system can 
be transferred to the other [16, 17]. 

The first step of the dimensional analysis is determining the input quantities that define the output value 
of the considered parameter – the sound absorption coefficient. In the case of acoustic metamaterials, we 
can see in Sects. 2.1 and 2.2 that these input quantities depend on the geometry of a particular system. 
Generally, we can point to the following: frequency 𝑓𝑓, geometrical dimensions of ducts and slits building  
a unit cell – generally referred to as 𝑙𝑙𝐺𝐺 , speed of sound 𝑐𝑐, dynamic viscosity 𝜂𝜂, static pressure 𝑃𝑃0, Prandtl 
number Pr, heat capacity ratio 𝛾𝛾. We can express sound absorption coefficient 𝛼𝛼 as a function of these 
quantities: 

𝛼𝛼 = 𝐹𝐹(𝑓𝑓, 𝑙𝑙𝐺𝐺 , 𝑐𝑐,𝜌𝜌0,𝜇𝜇,𝑃𝑃0, Pr, 𝛾𝛾) (16) 

Then, we should define the dimensional base – a set of dimensional quantities that can be used to express 
the remaining dimensional quantities. It is a good practice to use quantities of SI units. In these case, three 
quantities are chosen: frequency 𝑓𝑓 [Hz = 1/s] – representing time [s], sound speed 𝑐𝑐 [m/s] – representing 
length [m], and density 𝜌𝜌0 [kg/m3] – representing mass [kg]. Having defined the dimensional base, we can 
express the remaining dimensional quantities using the quantities from the base and define so-called 
criterial numbers: 

 Π𝑙𝑙𝐺𝐺 =  
𝑙𝑙𝐺𝐺 ∗ 𝑓𝑓
𝑐𝑐

      Π𝜇𝜇 =  
𝜇𝜇 ∗ 𝑓𝑓
𝜌𝜌0𝑐𝑐2

      Π𝑝𝑝0 =  
𝑝𝑝0
𝜌𝜌0𝑐𝑐2

  

According to the Buckingham π theorem, sound absorption coefficient 𝛼𝛼 can be expressed as the function 
of these criterial numbers and remaining non-dimensional input quantities: 

𝛼𝛼 = 𝐹𝐹�(Π𝑙𝑙𝐺𝐺 ,Π𝜇𝜇 ,Π𝑝𝑝0 , Pr, 𝛾𝛾) (17) 

This means that in the case of a 1:S scale model in the air of normal density and sound speed, the geometrical 
dimensions of the system and dynamic viscosity of air must be decreased S-times, while the static pressure 
remains unchanged. It should be noted that also Prandtl number Pr and heat capacity ratio 𝛾𝛾 must remain 
unchanged in the model in comparison with its full-size equivalent. As per [15], the speed of sound and air 
density remain unchanged and the frequency is S times higher. The dimensional analysis was proven to be 
correct in the example of a rectangular slit of the width of 10 mm, the length of 120 mm, and the width of  
a unit cell of 50 mm (full-size sample, the dimensions for the considered scale factors were decreased 
according to the derived similarity criteria). We can see in Fig. 1 that the sound absorption curves 
determined with TMM and with respect to all the derived similarity criteria are identical. 

 
Figure 1. Sound absorption coefficient of a slit (width: 10 mm, length: 120 mm,  

the width of a unit cell: 58 mm), determined with TMM  
for a full-size sample and its equivalents for scale factors 1:4 and 1:8.  
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4. Neglecting similarity criteria regarding the medium 

Fulfilling the requirement of the similarity criteria derived in Sect. 3 regarding the medium is particularly 
difficult. As was shown previously, it is impossible to change air viscosity by changing its easily-modificative 
parameters, such as temperature and relative humidity for any reasonable scale factors 1:S [18]. What is 
more, the Prandtl number which should remain unchanged depends on the dynamic viscosity of the 
medium, which on the other hand should be modified. Also, the speed of sound and air density should 
remain unchanged. This means that we would have to manipulate air parameters very specifically. The 
solution could be changing the composition of air or replacing the air with other fluids, chosen specifically 
to meet the requirements of the dimensional analysis. However, it would make the measurement procedure 
much more challenging and using scaled metamaterials while building room models – ineffective. What is 
more, changing the medium for the measurement could cause additional troubles with electro-acoustic 
equipment and would require the verification of the similarity criteria derived and commonly used for other 
types of acoustic materials, such as porous materials or perforated plates. This makes the efforts to fulfill 
all the requirements of the classical dimensional analysis highly illogical. Therefore, in the next step, the 
influence of neglecting the similarity criteria regarding the medium (air) was investigated in a FEM model. 

4.1. Finite element method models 

Finite element method modeling included two examples: the model of a single slit, and the model of a slit 
loaded with a quarter-wavelength resonator. Both models were prepared in 2D geometry, each time a unit 
cell was modeled with Floquet periodic conditions. Thermoviscous losses were accounted for with the use 
of the narrow region acoustics module, in which effective parameters are calculated. A triangular mesh was 
used, with a maximum element size equal to 1/20 of the length of the shortest wavelength in the narrow 
regions and close to the panel surface and 1/6 of the length of the shortest wavelength in the remaining 
parts of the geometry. The incident plane wave was modeled with the background pressure field, and in 
order to avoid sound reflection from the termination of the model, the plane wave radiation condition was 
applied, which means that no reflection was allowed from the top surface of the model (Fig. 2). Sound 
reflection coefficient was determined as the ratio of the reflected and incident acoustic pressure at 1/5 of 
the distance of the total air modeled above the panel. The walls were assumed rigid and perfectly reflecting. 
The calculations were performed at 1:1 scale, 1:4 scale, and 1:8 scale – only the geometrical criterial 
numbers were considered, and the parameters of air remained unchanged. 

 

Figure 2. Meshes of the FEM models of the unit cell of a single slit and a slit  
loaded with a quarter-wavelength resonator. 
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Table 1. Parameters of the FEM models at 1:1 scale. 

Model 
Total width  

of the unit cell  
d [mm] 

Length  
of the main slit  

ls [mm] 

Width  
of the main slit  

ws [mm] 

Length of the 
resonator  

lr [mm] 

Width of the 
resonator  
wr [mm] 

slit 58 120 10 – – 
slit with a  
quarter-wavelength 
resonator 

132 112 24 96 16 

5. Results and discussion 

The results of the finite element method modeling are shown in Fig. 3. All the results were transposed for 
the full-size frequency range. We can see in Fig. 3 that neglecting similarity criteria regarding the medium 
(air) has no effect on the resonance frequency of the structure. On the other hand, it has a significant impact 
on the values of the modeled sound absorption coefficient. In both cases, the maximum sound absorption 
value increases with increasing scale factor. In the case of the simple slit unit cell, the maximum values of 
sound absorption are 0.2, 0.36, and 0.47 for scale factors 1:1, 1:4, and 1:8. This means that for the scale 
factor 1:8 the maximum absorption doubles. The observations are analogous in the case of the unit cell with 
a slit loaded with a quarter-wavelength resonator. This is caused by the increasing importance of the 
thermoviscous phenomena in slits of decreased dimensions.  

a) b) 

 

Figure 3. Sound absorption coefficient of two unit cells: a) a single slit, b) a slit loaded with  
a quarter-wavelength resonator of parameters given in Tab. 1,  

modeled with the FEM method for three scale factors 1:1, 1:4, and 1:8.  

6. Conclusions 

The paper discusses the possibility of scaling a generalized building block of the acoustic metamaterial with 
volumetric scatterers. A classical dimensional analysis of a generalized building block of a unit cell was 
performed in terms of sound absorption coefficient, the criterial numbers were derived. It was shown that 
in order to correctly scale a metamaterial, all the geometrical dimensions and dynamic viscosity of air must 
be scaled, and the Prandtl number and heat capacity ratio must remain unchanged. Since it is impossible to 
manipulate air parameters this selectively, the influence of neglecting similarity criteria regarding the 
surrounding medium was investigated. It was shown that disregarding these conditions does not influence 
the resonant frequency of the system but causes an increase in the sound absorption coefficient. Therefore, 
new criterial numbers must be derived in order to scale such metamaterials correctly. 
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