Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper compares the classification and prediction capabilities of decision tree (DT), genetic programming (GP), and gradient boosting decision tree (GBT) techniques for one-month ahead prediction of standardized precipitation index in Ankara province and standardized precipitation evaporation index in central Antalya region. The evolved models were developed based on multi-station prediction scenarios in which observed (reanalyzed) data from nearby stations (grid points) were used to predict drought conditions in a target location. To tackle the rare occurrence of extreme dry/wet conditions, the drought series at the target location was categorized into three classes of wet, normal, and dry events. The new models were trained and validated using the frst 70% and last 30% of the datasets, respectively. The results demonstrated the promising performance of GBT for meteorological drought classification. It provides better performance than DT and GP in Ankara; however, GP predictions for Antalya were more accurate in the testing period. The results also exhibited that the proposed GP model with a scaled sigmoid function at root can efortlessly classify and predict the number of dry, normal, and wet events in both case studies.
Wydawca
Czasopismo
Rocznik
Tom
Strony
909--918
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- Department of Civil Engineering, Antalya Bilim University, Antalya, Turkey
Bibliografia
- 1. Abbasi A, Khalili K, Behmanesh J, Shirzad A (2019) Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake. Theoret Appl Climatol 138(1–2):553–567. https://doi.org/10.1007/s00704-019-02825-9
- 2. Başakın EE, Ekmekcioğlu Ö, Özger M (2020) Drought prediction using hybrid soft-computing methods for semi-arid region. Model Earth Syst Environ 1–9. https://doi.org/10.1007/s40808-020-01010-6
- 3. Belayneh A, Adamowski J (2012) Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl Comput Intell Soft Comput 2012:6. https://doi.org/10.1155/2012/794061
- 4. Barua S, Ng AWM, Perera BJC (2012) Artificial neural network–based drought forecasting using a nonlinear aggregated drought index. J Hydrol Eng 17(12):1408–1413. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000574
- 5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
- 6. Choubin B, Khalighi-Sigaroodi S, Malekian A, Ahmad S, Attarod P (2014) Drought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approach. J Mt Sci 11(6):1593–1605. https://doi.org/10.1007/s11629-014-3020-6
- 7. Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064
- 8. Danandeh Mehr A (2021) Seasonal rainfall hindcasting using ensemble multi-stage genetic programming. Theo Appl Climatol 143(1–2):461–472. https://doi.org/10.1007/s00704-020-03438-3
- 9. Danandeh Mehr A, Vaheddoost B (2020) Identification of the trends associated with the SPI and SPEI indices across Ankara, Turkey. Theor Appl Climatol 139(3–4):1531–1542. https://doi.org/10.1007/s00704-019-03071-9
- 10. Danandeh Mehr A, Nourani V, Hrnjica B, Molajou A (2017) A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events. J Hydrol 555:397–406. https://doi.org/10.1016/j.jhydrol.2017.10.039
- 11. Danandeh Mehr A, Nourani V, Kahya E, Hrnjica B, Sattar AM, Yaseen ZM (2018) Genetic programming in water resources engineering: a state-of-the-art review. J Hydrol 566:643–667. https://doi.org/10.1016/j.jhydrol.2018.09.043
- 12. Danandeh Mehr A, Sorman AU, Kahya E, Hesami Afshar M (2020a) Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. Hydrol Sci J 65(2):254–268. https://doi.org/10.1080/02626667.2019.1691218
- 13. Danandeh Mehr A, Tur R, Çalışkan C, Tas E (2020b) A novel fuzzy random forest model for meteorological drought classification and prediction in ungauged catchments. Pure Appl Geophys 177(12):5993–6006. https://doi.org/10.1007/s00024-020-02609-7
- 14. Danandeh Mehr A, Vaheddoost B, Mohammadi B (2020c) ENN-SA: a novel neuro-annealing model for multi-station drought prediction. Comput Geosci 145:104622. https://doi.org/10.1016/j.cageo.2020.104622
- 15. Danandeh Mehr A, Safari MJS, Nourani V (2021) Wavelet packet-genetic programming: a new model for meteorological drought hindcasting. Teknik Dergi 32(4). https://doi.org/10.18400/tekderg.605453
- 16. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232. https://www.jstor.org/stable/2699986
- 17. Hrnjica B, Danandeh Mehr A (2019) Optimized genetic programming applications: emerging research and opportunities. IGI Global, Hershey, PA, pp 1–310. https://doi.org/10.4018/978-1-5225-6005-0
- 18. Keskin ME, Terzi O, Taylan ED, Küçükyaman D (2009) Meteorological drought analysis using data-driven models for the Lakes District, Turkey. Hydrol Sci J 54(6):1114–1124. https://doi.org/10.1623/hysj.54.6.1114
- 19. Kisi O, Gorgij AD, Zounemat-Kermani M, Mahdavi-Meymand A, Kim S (2019) Drought forecasting using novel heuristic methods in a semi-arid environment. J Hydrol 578:124053. https://doi.org/10.1016/j.jhydrol.2019.124053
- 20. Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48(7):1161–1172. https://doi.org/10.1046/j.1365-2427.2003.01086.x
- 21. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374. https://doi.org/10.2307/2529786
- 22. Malik A, Kumar A (2020) Meteorological drought prediction using heuristic approaches based on effective drought index: a case study in Uttarakhand. Arab J Geosci 13(6):1–17. https://doi.org/10.1007/s12517-020-5239-6
- 23. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the international 8th conference on applied climatology. American Meteorological Society, Anaheim. pp 179–184
- 24. Mehr AD, Kahya E, Özger M (2014) A gene–wavelet model for long lead time drought forecasting. J Hydrol 517:691–699. https://doi.org/10.1016/j.jhydrol.2014.06.012
- 25. Mishra AK, Desai VR, Singh VP (2007) Drought forecasting using a hybrid stochastic and neural network model. J Hydrol Eng 12(6):626–638. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(626)
- 26. Mokhtarzad M, Eskandari F, Vanjani NJ, Arabasadi A (2017) Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environ Earth Sci 76(21):729. https://doi.org/10.1007/s12665-017-7064-0
- 27. Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol J R Meteorol Soc 27(15):2103–2111. https://doi.org/10.1002/joc.1498
- 28. Nourani V, Molajou A (2017) Application of a hybrid association rules/decision tree model for drought monitoring. Global Planet Change 159:37–45. https://doi.org/10.1016/j.gloplacha.2017.10.008
- 29. Özger M, Mishra AK, Singh VP (2012) Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in Texas. J Hydrometeorol 13(1):284–297. https://doi.org/10.1175/JHM-D-10-05007.1
- 30. Özger M, Başakın EE, Ekmekcioğlu Ö, Hacısüleyman V (2020) Comparison of wavelet and empirical mode decomposition hybrid models in drought prediction. Comput Electron Agric 179:105851. https://doi.org/10.1016/j.compag.2020.105851
- 31. Roushangar K, Ghasempour R, Nourani V (2021) The potential of integrated hybrid pre-post-processing techniques for short-to long-term drought forecasting. J Hydroinf 23(1):117–135. https://doi.org/10.2166/hydro.2020.088
- 32. Safari MJS (2019) Decision tree (DT), generalized regression neural network (GR) and multivariate adaptive regression splines (MARS) models for sediment transport in sewer pipes. Water Sci Technol 79(6):1113–1122. https://doi.org/10.2166/wst.2019.106
- 33. Sigaroodi SK, Chen Q, Ebrahimi S, Nazari A, Choobin B (2014) Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran. Hydrol Earth Syst Sci 18(5):1995–2006. https://doi.org/10.5194/hess-18-1995-2014
- 34. Shirmohammadi B, Moradi H, Moosavi V, Semiromi MT, Zeinali A (2013) Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps case study: southeastern part of east Azerbaijan province, Iran. Nat Hazards 69:389–402. https://doi.org/10.1007/s11069-013-0716-9
- 35. Somorowska U (2016) Changes in drought conditions in Poland over the past 60 years evaluated by the standardized precipitation-evapotranspiration index. Acta Geophys 64(6):2530–2549. https://doi.org/10.1515/acgeo-2016-0110
- 36. Svoboda M, Fuchs BA (2016). Handbook of drought indicators and indices. Integrated drought management programme (IDMP), integrated drought management tools and guidelines series 2. World Meteorological Organization and Global Water Partnership, Geneva, Switzerland, 52
- 37. Şen Z (2015) Applied drought modeling, prediction, and mitigation. Elsevier, London
- 38. Tirivarombo S, Osupile D, Eliasson P (2018) Drought monitoring and analysis: standardised precipitation evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys Chem Earth 106:1–10. https://doi.org/10.1016/j.pce.2018.07.001
- 39. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. https://doi.org/10.1175/2009JCLI2909.1
- 40. Vidyarthi VK, Jain A (2020) Knowledge extraction from trained ANN drought classification model. J Hydrol 585:124804. https://doi.org/10.1016/j.jhydrol.2020.124804
- 41. Yaseen ZM, Shahid S (2020) Drought index prediction using data intelligent analytic models: a review. In: Intelligent data analytics for decision-support systems in hazard mitigation. Springer, Singapore, pp 1–27. https://doi.org/10.1007/978-981-15-5772-9_1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7371cc21-4a73-43f6-a248-a0e146743f0f