Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Inadequate waste management contributes significantly to the accumulation of plastic waste, as landfills accept unsorted waste. Various natural processes in landfills play a crucial role in microplastic pollution of both soil and aquatic systems. This study examined samples from Jatibarang Landfill, Indonesia, the largest waste disposal site in Central Java. Soil samples were collected from a depth of 0 to 20 cm in three zones – active, passive, and areas near settlements – and analyzed for microplastic abundance, size, shape, color, and polymer type. The study aimed to evaluate the distribution, ecological risks, and impacts of microplastics on the physical and chemical properties of soil at Jatibarang Landfill. Results indicated a high microplastic abundance, with counts reaching 2340 particles per kilogram of soil, particularly in areas close to settlements. The primary types of microplastics identified were polypropylene (PP), polystyrene (PS), and low-density polyethylene (LDPE). The polymer hazard index (PHI) and coefficient of microplastic impact (CMPI) were employed to assess the potential risks of microplastic pollution. Polypropylene was identified as the most significant pollutant due to its widespread use and persistent nature. Improved landfill management strategies are essential to mitigate microplastic pollution and its adverse environmental effects.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
272--285
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Doctoral Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang 50241, Indonesia
- Department of Environmental Health, Faculty of Health, Universitas Dian Nuswantoro, Semarang 50131, Indonesia
autor
- Doctoral Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang 50241, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
autor
- Doctoral Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang 50241, Indonesia
- Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
Bibliografia
- 1. Alista, F.A., Soemarno, S. (2021). Analisis Permeabilitas Tanah Lapisan Atas Dan Bawah Di Lahan Kopi Robusta. Jurnal Tanah Dan Sumberdaya Lahan, 8(2), 493–504. https://doi.org/10.21776/ub.jtsl.2021.008.2.20
- 2. Blackburn, K., Green, D. (2022). The potential effects of microplastics on human health: What is known and what is unknown. Ambio, 51(3), 518–530. Springer Science and Business Media B.V. https://doi.org/10.1007/s13280-021-01589-9
- 3. Burrows, S., Colwell, J., Costanzo, S., Kaserzon, S., Okoffo, E., Ribeiro, F., O’Brien, S., Toapanta, T., Rauert, C., Thomas, K.V., Galloway, T. (2024). UV sources and plastic composition influence microplastic surface degradation: Implications for plastic weathering studies. Journal of Hazardous Materials Advances, 14, 100428. https://doi.org/10.1016/j.hazadv.2024.100428
- 4. Chamanee, G., Sewwandi, M., Wijesekara, H., Vithanage, M. (2023). Global perspective on microplastics in landfill leachate; Occurrence, abundance, characteristics, and environmental impact. Waste Management, 171, 10–25. https://doi.org/10.1016/j.wasman.2023.08.011
- 5. Chen, Y., Li, Y., Liang, X., L S., Ren, J., Zhang, Y., Han, Z., Gao, B., Sun, K. (2024). Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Research, 3(1), 1–23. https://doi.org/10.1007/s44246-024-00124-1
- 6. Fajaruddin Natsir, M., Selomo, M., Ibrahim, E., Arsin, A.A., Alni, N.C. (2021). Analysis on microplastics in dug wells around Tamangapa Landfills, Makassar City, Indonesia. Gaceta Sanitaria, 35, S87–S89. https://doi.org/10.1016/j.gaceta.2020.12.024
- 7. Feng, S., Lu, H., Liu, Y. (2021). The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: Different land use and mulching time in facility agriculture. Environmental Pollution, 279. https://doi.org/10.1016/j.envpol.2021.116939
- 8. Ghorbaninejad Fard Shirazi, M.M., Shekoohiyan, S., Moussavi, G., Heidari, M. (2023). Microplastics and mesoplastics as emerging contaminants in Tehran landfill soils: The distribution and induced-ecological risk. Environmental Pollution, 324. https://doi.org/10.1016/j.envpol.2023.121368
- 9. Ghosh, S., Sinha, J. K., Ghosh, S., Vashisth, K., Han, S., Bhaskar, R. (2023). Microplastics as an Emerging Threat to the Global Environment and Human Health. Sustainability (Switzerland) 15(14). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/su151410821
- 10. Guo, J.J., Huang, X.P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Cai, Q. Y., Mo, C.H., Wong, M.H. (2020). Source, migration and toxicology of microplastics in soil. In Environment International 137. Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.105263
- 11. He, P., Chen, L., Shao, L., Zhang, H., Lü, F. (2019). Municipal solid waste (MSW) landfill: A source of microplastics? Evidence of microplastics in landfill leachate. Water Research, 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060
- 12. He, W., Liu, S., Zhang, W., Yi, K., Zhang, C., Pang, H., Huang, D., Huang, J., Li, X. (2023). Recent advances on microplastic aging: Identification, mechanism, influence factors, and additives release. Science of the Total Environment, 889. https://doi.org/10.1016/j.scitotenv.2023.164035
- 13. Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. de los A., Sanchez del Cid, L., Chi, C., Escalona Segura, G., Gertsen, H., Salánki, T., van der Ploeg, M., Koelmans, A.A., Geissen, V. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14588-2
- 14. Kabir, M. S., Wang, H., Luster-Teasley, S., Zhang, L., Zhao, R. (2023). Microplastics in landfill leachate: Sources, detection, occurrence, and removal. Environmental Science and Ecotechnology, (16). Editorial Board, Researchof Environmental Sciences. https://doi.org/10.1016/j.ese.2023.100256
- 15. Kim, W.K., Park, H., Ishii, K., Ham, G.Y. (2023). Investigation on microplastics in soil near landfills in the Republic of Korea. Sustainability (Switzerland), 15(15). https://doi.org/10.3390/su151512057
- 16. Li, W., Wang, S., Wufuer, R., Duo, J., Pan, X. (2023). Distinct soil microplastic distributions under various farmland-use types around Urumqi, China. Science of the Total Environment, 857. https://doi.org/10.1016/j.scitotenv.2022.159573
- 17. Lithner, D., Larsson, A., Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409(18), 3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038
- 18. Medyńska-Juraszek, A., Jadhav, B. (2022). Influence of different microplastic forms on pH and mobility of Cu2+ and Pb2+ in soil. Molecules, 27(5). https://doi.org/10.3390/molecules27051744
- 19. Monkul, M.M., Özhan, H.O. (2021). Microplastic contamination in soils: A review from geotechnical engineering view. Polymers, 13(23). https://doi.org/10.3390/polym13234129
- 20. Pires, J.P., Miranda, G.M., de Souza, G.L., Fraga, F., da Silva Ramos, A., de Araújo, G. E., Ligabue, R.A., Azevedo, C.M.N., Lourega, R.V., de Lima, J.E.A. (2019). Investigation of degradation of polypropylene in soil using an enzymatic additive. Iranian Polymer Journal (English Edition), 28(12), 1045–1055. https://doi.org/10.1007/s13726-019-00766-8
- 21. Pratiwi, O.A., Achmadi, U.F., Kurniawan, R. (2024). Microplastic pollution in landfill soil: Emerging threats the environmental and public health. Environmental Analysis Health and Toxicology, 39(1). https://doi.org/10.5620/eaht.2024009
- 22. Qiu, R., Song, Y., Zhang, X., Xie, B., He, D. (2020). Microplastics in urban environments: sources, pathways, and distribution. Handbook of Environmental Chemistry, 95, 41–61. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/698_2020_447
- 23. Rahman, A., Sarkar, A., Yadav, O.P., Achari, G., Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Science of the Total Environment (757). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.143872
- 24. Rahmani, A., Nasrollah Boroojerdi, M., Seid-mohammadi, A., Shabanloo, A., Zabihollahi, S., Zafari, D. (2023a). Abundance and characteristics of microplastics in different zones of waste landfill site: A case study of Hamadan, Iran. Case Studies. Chemical and Environmental Engineering, 8. https://doi.org/10.1016/j.cscee.2023.100494
- 25. Rahmani, A., Nasrollah Boroojerdi, M., Seid-mohammadi, A., Shabanloo, A., Zabihollahi, S., Zafari, D. (2023b). Abundance and characteristics of microplastics in different zones of waste landfill site: A case study of Hamadan, Iran. Case Studies. Chemical and Environmental Engineering, 8, 100494. https://doi.org/10.1016/j.cscee.2023.100494
- 26. Rangel-Buitrago, N., Arroyo-Olarte, H., Trilleras, J., Arana, V.A., Mantilla-Barbosa, E., Gracia C.,A., Mendoza, A.V., Neal, W.J., Williams, A.T., Micallef, A. (2021). Microplastics pollution on Colombian central caribbean beaches. Marine Pollution Bulletin, 170, 112685. https://doi.org/10.1016/j.marpolbul.2021.112685
- 27. Ranjani, M., Veerasingam, S., Venkatachalapathy, R., Mugilarasan, M., Bagaev, A., Mukhanov, V., Vethamony, P. (2021). Assessment of potential ecological risk of microplastics in the coastal sediments of India: A meta-analysis. Marine Pollution Bulletin, 163(2020). https://doi.org/10.1016/j.marpolbul.2021.111969
- 28. Reddy, K.R., Rai, R.K., Green, S.J., Chetri, J.K. (2020). Effect of pH on methane oxidation and community composition in landfill cover soil. Journal of Environmental Engineering, 146(6). https://doi.org/10.1061/(asce)ee.1943-7870.0001712
- 29. Ruehlmann, J., Körschens, M. (2009). Calculating the effect of soil organic matter concentration on soil bulk density. Soil Science Society of America Journal, 73(3), 876–885. https://doi.org/10.2136/sssaj2007.0149
- 30. Salam, A.K. (2020). Ilmu tanah abdul kadir salam global madani press bandar lampung. www.globalmadani.sch.id
- 31. Shi, Y., Shi, L., Huang, H., Ye, K., Yang, L., Wang, Z., Sun, Y., Li, D., Shi, Y., Xiao, L., Gao, S. (2024). Analysis of aged microplastics: a review. Environmental Chemistry Letters, 22(4), 1861–1888. https://doi.org/10.1007/s10311-024-01731-5
- 32. Sholokhova, A., Denafas, G., Ceponkus, J., Omelianenko, T. (2023). Microplastics in landfill bodies: abundance, spatial distribution and effect of landfill age. Sustainability(Switzerland), 15(6). https://doi.org/10.3390/su15065017
- 33. Sindern, A., Ricken, T., Bluhm, J., Widmann, R., Denecke, M., Gehrke, T. (2014). A coupled multicomponent approach for bacterial methane oxidation in landfill cover layers. PAMM, 14(1), 469–470. https://doi.org/10.1002/pamm.201410222
- 34. Su, Y., Zhang, Z., Wu, D., Zhan, L., Shi, H., Xie, B. (2019). Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research, 164. https://doi.org/10.1016/j.watres.2019.114968
- 35. Unnikrishnan, V., Valsan, G., Amrutha, K., Sebastian, J.G., Rangel-Buitrago, N., Khaleel, R., Chandran, T., Reshma, S.R., Warrier, A.K. (2023). A baseline study of microplastic pollution in a Southern Indian Estuary. Marine Pollution Bulletin, 186(2022), 114468. https://doi.org/10.1016/j.marpolbul.2022.114468
- 36. Upadhyay, K., Bajpai, S. (2021). Microplastics in landfills: A comprehensive review on occurrence, characteristics and pathways to the aquatic environment. In Nature Environment and Pollution Technology, 20(5), 1935–1945. Technoscience Publications. https://doi.org/10.46488/NEPT.2021.V20I05.009
- 37. Utami, I., Liani, M. (2021). Identifikasi mikroplastik pada Air Sumur Gali di sekitar TPA Piyungan Yogyakarta. Riset Daerah, XXI(3), 4003–4014.
- 38. Wang, C., Tang, J., Yu, H., Wang, Y., Li, H., Xu, S., Li, G., Zhou, Q. (2022). Microplastic pollution in the soil environment: characteristics, influencing factors, and risks. Sustainability, (Switzerland) 14(20). MDPI. https://doi.org/10.3390/su142013405
- 39. Wang, Z., Li, W., Li, W., Yang, W., Jing, S. (2023). Effects of microplastics on the water characteristic curve of soils with different textures. Chemosphere, 317. https://doi.org/10.1016/j.chemosphere.2023.137762
- 40. Wang, Z., Li, X., Shi, H., Li, W., Yang, W., Qin, Y. (2020). Estimating the water characteristic curve for soil containing residual plastic film based on an improved pore-size distribution. Geoderma, 370. https://doi.org/10.1016/j.geoderma.2020.114341
- 41. Wojnowska-Baryła, I., Bernat, K., Zaborowska, M. (2022). Plastic waste degradation in landfill conditions: the problem with microplastics, and their direct and indirect environmental effects. International Journal of Environmental Research and Public Health, 19(20). https://doi.org/10.3390/ijerph192013223
- 42. Xu, P., Peng, G., Su, L., Gao, Y., Gao, L., Li, D. (2018). Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China. Marine Pollution Bulletin, 133, 647–654. https://doi.org/10.1016/j.marpolbul.2018.06.020
- 43. Yang, H., Yumeng, Y., Yu, Y., Yinglin, H., Fu, B., Wang, J. (2022). Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems. In Ecotoxicology and Environmental Safety (Vol. 243). Academic Press. https://doi.org/10.1016/j.ecoenv.2022.114009
- 44. Yoon, J.H., Kim, B.H., Kim, K.H. (2024). Distribution of microplastics in soil by types of land use in metropolitan area of Seoul. Applied Biological Chemistry, 67(1). https://doi.org/10.1186/s13765-024-00869-8
- 45. Yu, Q., Hu, X., Yang, B., Zhang, G., Wang, J., Ling, W. (2020). Distribution, abundance and risks of microplastics in the environment. Chemosphere, 249. https://doi.org/10.1016/j.chemosphere.2020.126059
- 46. Zhang, F., Yang, X., Zhang, Z. (2024). Effects of soil properties and land use patterns on the distribution of microplastics: A case study in southwest China. Journal of Environmental Management, 356. https://doi.org/10.1016/j.jenvman.2024.120598
- 47. Zhang, P., Yuan, Y., Zhang, J., Wen, T., Wang, H., Qu, C., Tan, W., Xi, B., Hui, K., Tang, J. (2023). Specific response of soil properties to microplastics pollution: A review. Environmental Research, 232(8). https://doi.org/10.1016/j.envres.2023.116427
- 48. Zhang, S., Yang, X., Gertsen, H., Peters, P., Salánki, T., Geissen, V. (2018). A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 616–617, 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.10.213
- 49. Zhao, T., Lozano, Y.M., Rillig, M.C. (2021). Microplastics increase soil ph and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9, 1–14. https://doi.org/10.3389/fenvs.2021.675803
- 50. Zhou, Y., Jia, Z., Zheng, G., Chen, L., Zhang, Q., Su, B., Zhou, S. (2023). Microplastics in agricultural soils on the coastal plain: Spatial characteristics, influencing factors and sources. Science of the Total Environment, 901. https://doi.org/10.1016/j.scitotenv.2023.165948
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7370f181-1bdf-41fc-9271-4be2a93dedf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.