PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview of selected natural gas drying methods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gas produced from the deposit usually contains various types of pollution. They are the reason for limiting its use, often making its use impossible. Therefore, it requires appropriate treatment. One of the main pollutants in gas is water. Its occurrence causes a lot of problems, especially at the stage of gas transport, such as the formation of hydrates blocking pipelines and apparatus, causes the phenomenon of condensation and corrosion of pipelines, especially if there is carbon dioxide or hydrogen sulphide in the gas. The paper presents a number of methods that enable drying of gas after extraction. Each of them has different parameters that will be achieved for the gas after it is dried. Depending on the required degree of drying, the economics of the process and compatibility with other dependent processes, the individual methods are more or less used in gas engineering. The paper discusses methods of absorption in ethylene glycol solutions, adsorption methods using silica gel, molecular sieves or calcium chloride and low-temperature processes such as Twister® supersonic separator, IFPEX-1® process and DexProTM process.
Rocznik
Strony
73--83
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Msc Eng.; Mineral and Energy Economy Research Institute of the PAS, ul. J. Wybickiego 7A, 31-261 Kraków, Poland
Bibliografia
  • [1] Ropa, C.E. (2014). Osuszanie gazu ziemnego (Natural gas drying). In S. Nagy (Eds.), Vademecum gazownika. Tom I: Podstawy Gazownictwa ziemnego: pozyskiwanie, przygotowanie do transportu, magazynowanie (Gasman’s Vademecum. Vol.I: Fundamentals of Natural Gas: acquisition, preparation for transport, storage). Kraków, SITPNiG.
  • [2] Mesigerian, R., Heydarinasab, A., Rashidi, A., & Zamani, Y. (2020). Adsorption and growth of water clusters on UiO-66 based nanoadsorbents: A systematic and comparative study on dehydration of natural gas. Separation and Purification Technology, 238, 116512.
  • [3] Łaciak, B., Czepirski, L., & Wójcikowski M. (2006). Ocena możliwości wykorzystania promieniowania mikrofalowego do odwadniania glikoli stosowanych w gazownictwie ziemnym (Evaluation of the possibility of using microwave radiation for dewatering glycols used in natural gas industry). WIERTNICTWO NAFTA GAZ, 23/1, 307-311.
  • [4] Bissor, E., Yurishchev, A., Ullumann, A., & Brauner, N. (2020). Prediction of the critical gas flow rate for avoiding liquid accumulation in natural gas pipelines. International Journal of Multiphase Flow, 130, 103361, https://doi.org/10.1016/j.ijmultiphaseflow.2020.103361.
  • [5] Generowicz, N. (2018). Technologie osuszania gazu ziemnego i gazów przemysłowych (Technologies of the drying of natural gas and industrial gases) (Engineering thesis, AGH University of Science and Technology, Faculty of Geology, Geophysisc and Environmental Protection) Poland, Cracow.
  • [6] Teixeira, A.M., Oliveira Arinelli, L., Medeiros, J. L., & Queiroz F. Araujo, O. (2019). Economic leverage affords post-combustion capture of 43% of carbon emissions: Supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO2 drying. Journal of Environmental Management, 236, 534-550, https://doi.org/10.1016/j.jenvman.2019.02.008.
  • [7] Fang, S., Zhang, X., Zhang, J., Chang, Ch., Li, P., & Bai, J. (2020). Evaluation on the natural gas hydrate formation process. Chinese Journal of Chemical Engineering, 28, 881-888, https://doi.org/10.1016/j.cjche.2019.12.021.
  • [8] Pokrzywniak, C. (2007a). Analiza rozwiązań technicznych i efektywności stosowanych procesów glikolowego osuszania gazu ziemnego (Analysis of technical solutions and efficiency of the applied processes of glycol dehydration of natural gas). WIERTNICTWO NAFTA GAZ, 24(1), 381-389.
  • [9] Yang, Y., Chen, Y., Xu, Z., Wang, L., & Zhang, P. (2020). A three-bed six-step TSA cycle with heat carrier gas recycling and its model-based performance assessment for gas drying. Separation and Purification Technology, 237, 116335, https://doi.org/10.1016/j.seppur.2019.116335.
  • [10] Liu, H., Wu, Y., Guo, P., Liu, Z., Wang, Z., Chen, S., Wang, B., & Huang, Z. (2019). Compressibility factor measurement and simulation of five high-temperature ultra-high-pressure dry and wet gases. Fluid Phase Equilibria, 500, 112256, https://doi.org/10.1016/j.fluid.2019.112256.
  • [11] Molenda, J. (1993). Gaz ziemny. Paliwo i surowiec. (Natural gas. Fuel and raw material) Warszawa: Wydawnictwo Naukowo-Techniczne.
  • [12] Kong, Z.Y., Mahmoud, A., Liu, S., & Sunarso, J. (2018). Revamping existing glycol technologies in natural gas dehydration to improve the purity and absorption efficiency: Available methods and recent developments. Journal of Natural Gas Science and Engineering, 56, 486-503. https://doi.org/10.1016/j.jngse.2018.06.008.
  • [13] Janocha, A. (2010). Osuszanie gazu ziemnego w warunkach niskiego ciśnienia w złożu (Natural gas drying in low pressure reservoir conditions). Nafta-Gaz, 66(5), 379-382.
  • [14] http://home.agh.edu.pl/~kepw/student/plik/sg_w4.pdf
  • [15] Tomków, Ł. (2012). Installations for the liquefaction of natural gas in the vicinity of natural gas deposits. (Engineering thesis, Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering) Poland, Wrocław.
  • [16] Pokrzywniak, C. (2007b). Metody osuszania gazu ziemnego. Porównanie rozwiązań technicznych typowego procesu glikolowego osuszania gazu ziemnego i procesu z zastosowaniem gazu stripingowego w aspekcie finansowym oraz uzyskanej efektywności (Natural gas drying methods. Comparison of technical solutions of a typical glycol process for dehydrating natural gas and a process with the use of stripping gas in financial terms and the achieved efficiency gains). Nafta i gaz, 4, 18-22.
  • [17] Grynia, E., & Carroll, J. (2013). Niepożądana woda czyli przegląd procesów osuszania gazu ziemnego (Unwanted water - an overview of natural gas dehydration processes). Szejk 2(109), 18-23.
  • [18] Salman, M., Zhang, L., & Chen, J. (2020). A computational simulation study for techno-economic comparison of conventional and stripping gas methods for natural gas dehydration. Chinese Journal of Chemical Engineering, https://doi.org/10.1016/j.cjche.2020.03.013.
  • [19] Mandera, A., & Szczepański, Z. (2007). Ferro-hydrożele krzemionkowe. Wytwarzanie i badania ultradźwiękowe (Ferro-hydro-silica gels. Manufacturing and ultrasonic testing). Bydgoszcz: Instytut Mechaniki Środowiska i Informatyki Stosowanej Uniwersytetu Kazimierza Wielkiego w Bydgoszczy.
  • [20] He, X., Kumakiri, I., & Hillestad, M. (2020). Conceptual process design and simulation of membrane systems for integrated natural gas dehydration and sweetening. Separation and Purification Technology, 247(116993).
  • [21] Zhu, L., Lv, X., Tong, S., Zhang, T., Song, Y., Wang, Y., Hao, Z., Hunag, Ch., & Xia, D. (2019). Modification of zeolite by metal and adsorption desulfurization of organic sulphide in natural gas. Journal of Natural Gas Science and Engineering, 69, 102941, https://doi.org/10.1016/j.jngse.2019.102941.
  • [22] https://www.hydrocarbonengineering.com/directory/engineering/licensors/prosernat/
  • [23] http://www.twisterbv.com/twister-supersonic/
  • [24] Barelli, L., Bidini, G., Ottaviano, P.A., & Perla, M. (2020). Dehydration and low temperature separation technologies for liquified natural gas production via electrolysis: A systematic review. Journal of Energy Storag, 30, 101471.
  • [25] Gaska, K., Generowicz, A., Zimoch, I. Ciula, J., & Siedlarz, D. (2018). A GIS based graph oriented algorithmic model for poly-optimization of waste management system. Architecture Civil Engineering Environment, 11(4), 151-159.
  • [26] Koval, V., Petrashevska, A.D., Popova, O.L., Mikhno, I.S., & Gaska, K. (2019).Methodology of ecodiagnostics on the example of rural areas. Architecture Civil Engineering Environment, 12(1), 139-144.
  • [27] Twardosz, R., & Cebulska, M. (2010). Observations and Measurements of Precipitation in the Polish Province of Galicia in the Nineteenth Century. In P. Przybylak, J. Majorowicz, R. Brázdil, & M. Kejna, (Eds.), Polish Climate in the European Context: An Historical Overview. Springer. doi: 10.1007/978-90- 481-3167-9_23.
  • [28] Generowicz, A., Gaska K., & Hajduga G. (2018). Multi-criteria analysis of the Waste management system in a metropolitan area, E3S Web Conf. 44 00043, DOI: 10.1051/e3sconf/20184400043.
  • [29] Rerak, M., & Oclon, P. (2017). Thermal Analysis of Underground Power Cable System. Journal of Thermal Science, 26(5), 465-471.
  • [30] Gluba, T., Olejnik T.P., & Obraniak A. (2015). Technology for producing washing agent in continuous process (Technologia wytwarzania środka piorącego w procesie ciągłym), Przemysł Chemiczny, 94(8), 1370-1374; doi: 10.15199/62.2015.8.24.
  • [31] Olejnik, T.P., & Sobiecka, E. (2017). Utilitarian Technological Solutions to Reduce CO2 Emission in the Aspect of Sustainable Development, Problemy ekorozwoju - Problems of sustainable development, 12(2), 173-179.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-736dcb09-056d-4a1e-99b3-006b4824013a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.