PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wyznaczanie współczynników dyfuzji chlorków w materiałach cementowych – Przegląd metod eksperymentalnych i modelowania: Część II – Metody Migracyjne

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Determination of Chloride Diffusion Coefficient in Cement-Based Materials – A Review of Experimental and Modeling Methods: Part II – Migration Methods
Języki publikacji
PL EN
Abstrakty
PL
Korozja stalowych elementów zbrojenia stanowi poważny problemem dla trwałości i bezpieczeństwa konstrukcji żelbetowych. Jednym z najbardziej agresywnych chemicznych składników powodujących korozję zbrojenia są jony chlorkowe działające poprzez ogólny mechanizm depasywacji powierzchni zbrojenia. Jony chlorkowe dyfundują w roztworze w porach betonu docierając do zbrojenia, dlatego znajomość współczynnika dyfuzji chlorków w betonie jest niezwykle ważna. Ten artykuł jest drugim z serii trzech prac, których celem jest przegląd metod doświadczalnych i modeli teoretycznych stosowanych do wyznaczania współczynników dyfuzji chlorków w materiałach cementowych. W tej części omówione zostały metody migracyjne, których głównym atutem w porównaniu do metod dyfuzyjnych jest skrócenie czasu eksperymentu niezbędnego do obliczenia współczynników dyfuzji.
EN
The corrosion of steel reinforcement (rebars) in concrete structures is a severe durability and safety problem. One of the most aggressive chemical species which induces such corrosion is the chloride ion via the general mechanism of depassivation of the rebar surface. Chloride ions can diffuse through the solution of pore system in concrete to reach the rebar, thus the assessment of the diffusion coefficient of chloride in concrete is of paramount importance. This paper is the second part of a series of three papers which are meant to provide an overview of experimental methods and theoretical models which are used to predict a concrete materials resistivity to chloride ingress. Part 2 deals with migration methods which major attribute is shortening of experimental time necessary to determine diffusion coefficients.
Czasopismo
Rocznik
Strony
154--167
Opis fizyczny
Bibliogr. 57 poz., il.
Twórcy
  • Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza, Kraków
  • Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza, Kraków
  • Instytut Badawczy Dróg i Mostów, Warszawa
autor
  • Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza, Kraków
Bibliografia
  • 1. L. Tang, Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations, Cem. Concr. Res. 29, 1463-1468 (1999).
  • 2. K. Krabbenhøft, J. Krabbenhøft, Application of the Poisson–Nernst–Planck equations to the migration test, Cem. Concr. Res., 38 77–88 (2008).
  • 3. E. Samson, J. Marchand, K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures 36 156–165 (2003).
  • 4. M. Planck; Ann. Phys. Chem., 40, 561 (1980).
  • 5. T.R. Brumleve, R.P. Buck; J. Electroanal. Chem. 90, 1-31 (1978).
  • 6. A. Xu, S. Chandra, A discussion of the paper “Calculation of chloride diffusion coefficient in concrete from ionic migration measurements” by C. Andradre, Cem. Concr. Res. 24, 375-379 (1994).
  • 7. C.C. Yang, A comparison of transport properties for concrete using the ponding test and the accelerated chloride migration test, Mater. Struct. 38, 313-320 (2005).
  • 8. G.A. Narsilio, R. Li, P. Pivonka, D.W. Smith, Comparative study of methods used to estimate ionic diffusion coefficients using migration tests, Cem. Concr. Res. 37, 1152-1163 (2007).
  • 9. L. Tang, Electrically accelerated methods for determining chloride diffusivity in concrete – current development , Mag. Concr. Res. 48, 173-179 (1995).
  • 10. K. Stanish, R.D. Hooton, M.D.A. Thomas, A novel method for describing chloride ion transport due to an electrical gradient in concrete: Part 1. Theoretical description, Cem. Concr. Res., 34 2251–2260 (2004).
  • 11. D. Whiting, T.M. Mitchell, History of the Rapid Chloride Permeability Test, Transportation Research Records 1335, 55–62 (1992).
  • 12. Whiting, D.; Rapid determination of the chloride permeability of concrete, Federal Highway Administration. Report No. FHWA/RD-81/119, Washington D.C. 1981.
  • 13. S. Goto, D.M. Roy, Diffusion of Ions through Hardened Cement Pastes, Cem. Concr. Res. 11 751−757 (1981).
  • 14. Standard Method of Test for Rapid Determination of the Chloride Permeability of Concrete. AASHTO T 277-83, American Association of State Highway and Transportation Officials. Washington D.C. 1983
  • 15. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM C 1202–91, The American Society for Testing and Materials (ASTM), Philadelphia, USA, 1991.
  • 16. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, ASTM C 1202−12, ASTM, USA, 2012.
  • 17. Zhang T., Gjørv O.E.; Effect of ionic interaction in migration testing of chloride diffusivity in concrete. Cem. Concr. Res. 25, 1535-1542 (1995)
  • 18. Szweda Z., Zybura A., Analysis of chloride diffusion and migration in concrete. Part I. Theoretical model. Architecture Civil Engeneering Envinronment 12, 47-53 (2012)
  • 19. D. Whiting, Rapid Measurement of the Chloride Permeability of Concrete, Public Roads Magazine 45 101 (1981) [Federal Highway Administration and Transportation, USA].
  • 20. B. Díaz, X. R. Nóvoa, M. C. Pérez, Study of the chloride diffusion in mortar: A new method of determining diffusion coefficients based on impedance measurements, Cem. Concr. Composites 28 237–245 (2006).
  • 21. P.E. Streicher, M.G. Alexander, A Chloride Conduction Test for Concrete, Cem. Concr. Res. 25 1284−1294 (1995).
  • 22. Andrade C., Calculation of Chloride Diffusion Coefficients in Concrete Form Ionic Migration Measurements. Cement and Concrete Research; (23) No 3, 1993, 724–743.
  • 23. Hooton R.D., Thomas M.D.A., Stanish K. Testing the chloride penetration resistance of concrete: A literature review, prediction of chloride penetrationin concrete, Federal Highway Administration (USA), Publication No. FHWA-RD-00-142 (2000).
  • 24. M. Castellote M, C. Andrade, C. Alonso, Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests, Cem. Concr. Res. 31, 1411–1420 (2001).
  • 25. A. Atkinson, A.K. Nickerson, The Diffusion of Ions through Water-saturated Cement, J. Mater. Sci. 19 3068−3078 (1984).
  • 26. E.J. Garboczi, Permeability, Diffusivity and Microstructural Parameters: A Critical Review, Cem. Concr. Res. 20 (5), 591-601 (1990).
  • 27. NT BUILD335, Concrete, Mortar and Cement-based Repair Materials: Chloride Diffusion Coefficient from Migration Cell Experiments, 1997.
  • 28. JSCE-G571, Test Method for Effective Diffusion Coefficient of Chloride Ion in Concrete by Migration, Japan Society of Civil Engineers, 2003.
  • 29. X. Lu, Application of the Nernst–Einstein equation to concrete, Cem. Concr. Res. 27, 293-302 (1997).
  • 30. C.C. Yang, S.W. Cho, J.M. Chi, R. Huang, An electrochemical method for accelerated chloride migration test in cement-based materials, Mater. Chem. Phys., 77, 461-469 (2002).
  • 31. C.C. Yang, J.K. Su, Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar, Cem. Concr. Res., 32, 1559-1565 (2002).
  • 32. T. Zhang, O.E. Gjørv, Cem. Concr. Res. 24 1534-1548 (1994).
  • 33. D.J. Griffiths, Podstawy elektrodynamiki, PWN Warszawa (2015).
  • 34. A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, 2nd. Ed., Springer (2007).
  • 35. P.F. McGrath, R.D. Hooton, Influence of voltage on chloride diffusion coefficients from chloride migration tests, Cem. Concr. Res. 26 1239–1244 (1996).
  • 36. L. Tang, L.O. Nilsson, Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials Journal, 89 (1), 49–53 (1992).
  • 37. NT BUILD 492, Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments, 1999.
  • 38. L. Tang, L.O. Nilsson, Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials Journal, 89 (1), 49–53 (1992).
  • 39. C. Andrade, M. Castellote, C. Alonso, C. Gonzales, Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part 2: Different experimental relations. Joint conditions. Mater. Struct. 34, 323–331 (2001).
  • 40. Z. Szweda, A. Zybura, Analysis of chloride diffusion and migration in concrete Part I - Theoretical model, Arch. Civ. Eng. No. 1/2012, 47-54.
  • 41. J. Lizarazo-Marriaga, P. Claisse, Determination of the concrete chloride diffusion coefficient based on an electrochemical test and an optimization model, Materials Chemistry and Physics 117, 536–543 (2009).
  • 42. J. Lizarazo-Marriaga, P. Claisse, Modelling Chloride Penetration in Concrete Using Electrical Voltage and Current Approaches, Mater Res, 14, 31-38 (2011).
  • 43. ASTM-C1202, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, 2005.
  • 44. M. Collepardi, A. Marcialis, R. Turriziani, Kinetics of penetration of chloride ions into the concrete, Il Cemento 4 157–164 (1970).
  • 45. Andrade, C., Castellote, M., Alonso, C. and González, C., ‘Comparison of testing methods on chloride diffusion into concrete’, Proceedings of European Conference EUROMAT’98, Lisboa (Portugal), (July 1998).
  • 46. M. Andrade, M. Castellote, C. Alonso, C. Gonzáles, Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part 1: Comparison between several methods of calculation. Mater. Struct. 33, 21–28 (2000).
  • 47. P. Spiesz, M.M. Ballari, H.J.H. Brouwers, RCM: A new model accounting for the non-linear binding isotherm and the non-equilibrium conditions between the free- and bound-chloride concentrations, Constr. Build. Mater. 27, 293–304 (2012).
  • 48. L. Tang, Chloride transport in concrete – measurement and prediction (PhD thesis), publication P-96:6. Dept. of Building Materials, Chalmers University of Technology, Gothenburg, Sweden; 1996.
  • 49. K. Szyszkiewicz, J.J. Jasielec, A. Królikowska, R. Filipek, Determination of Chloride Diffusion Coefficient in Cement-Based Materials – A Review of Experimental and Modeling Methods: Part I – Diffusion Methods, Cement Wapno Beton 1, 52-67, 2017.
  • 50. J.C. Keister, G.B. Kasting, Ionic transport through a homogeneous membrane in the presence of a uniform electric field, J.Mem.Sci. 29, 155–167 (1986).
  • 51. M. Castellote M, C. Andrade, C. Alonso, Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests, Cem. Concr. Res., 31, 1411–1420 (2001).
  • 52. Streicher, P.E., Alexander, M.G. “A critical evaluation of chloride diffusion test methods for concrete; Proceedings of 3rd CANMET/ACI Intl. Confr. on Durability of Concrete, Nice, May 1994, Supplementary papers, p. 517, 1994.
  • 53. Tang L., Nilsson L.O.; Cem. and Concr. Res. 25, 113-1137 (1995).
  • 54. C.C. Yang, L.C. Wang, Materials Chemistry and Physics 85, 266 (2004)
  • 55. S. Goto, D.M. Roy, Diffusion of ions through hardened cement pastes, Cement and Concrete Research 11, 751–757 (1981).
  • 56. S.W. Yu, C.L. Page, Diffusion in cementitious materials: 1. Comparative study of chloride and oxygen diffusion in hydrated cement pastes, Cem. Concr. Res. 21, 581–588 (1991).
  • 57. V.T. Ngala, et al., Diffusion in cementitious materials: II. Further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes, Cem. Concr. Res. 25, 819–826 (1995).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-736af700-4ab3-473f-8d9c-056c8fd86854
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.