PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of temperature on physiology and bioenergetics of adult Harris mud crab Rhithropanopeus harrisii (Gould, 1841) from the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rates of physiological processes and bioenergetics of the Harris mud crab Rhithropanopeus harrisii were determined during a 7-day experiment on adult males (mean wet weight 0.83 ± 0.16 g) exposed to temperatures of 15°C and 20°C (S = 7). The results show that the change in temperature by 5°C caused detectable changes in locomotor activity, food consumption and faeces production and significant (p < 0.05) changes in metabolic rates. Food assimilation efficiency and the ammonia excretion rate did not change significantly (p > 0.05). The energy expended on metabolic processes was similar at both temperatures (15°C and 20°C) and amounted to 17.7 ± 6.4% and 16.7 ± 4.3% of the assimilated energy, respectively. Similar values were obtained for net production efficiency K2 (P/A) at 15°C and 20°C, i.e. 80.4 ± 22.4% and 82.9 ± 9.7%, respectively. The amount of energy available for production was 2-fold higher at a temperature of 20°C than at 15°C and amounted to 103.69 ± 25.61 and 206.40 ± 20.76 J d−1g−1 wet wt, respectively. The results show that from the bioenergetic point of view, higher experimental temperature is more “profitable” for adult R. harrisii specimens because it provides better conditions for the growth and reproduction.
Rocznik
Strony
219--227
Opis fizyczny
Bibliogr. 66 poz., rys.
Twórcy
  • Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
autor
  • Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
Bibliografia
  • 1. Bacevičius, E. & Gasiūnaitė Z.R. (2008). Two crab species-Chinese mitten crab (Eriocheir sinensis Milne-Edwards) and mud crab (Rhithropanopeus harrisii Gould ssp. Tridentatus Maitland) in the Lithuanian coastal waters, Baltic Sea. Trans. Wat. Bull. 2: 63–68. DOI: 10.1285/i1825229Xv2n2p63
  • 2. Chen, J.C. & Chia P.G. (1996). Oxygen Uptake and Nitrogen Excretion of Juvenile Scylla serrata at Different Temperature and Salinity Levels. J. Crust. Biol. 16(3): 437–442. DOI: 10.1163/193724096X00441
  • 3. Chen, J.C. & Kou T. (1996). Effects of temperature on oxygen consumption and nitrogenous excretion of juvenile Macrobrachium rosenbergii. Aquaculture. 145(1–4): 295–303. DOI: 10.1016/S0044-8486(96)01348-8
  • 4. Choy, S.C. (1986). Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae). Mar. Ecol. Prog. Ser. 31: 87–99
  • 5. Christiansen, M.E. & Costlow J.D.Jr. (1975). The effect of salinity and cyclic temperature on larval develop of the mud crab Rhithropanopeus harrisii (Brachyura: Xantidae) reared in the laboratory. Mar. Biol. 32: 215–221. DOI: 10.1007/BF00399201
  • 6. Conover, R.J. (1966). Assimilation of organic matter by zooplankton. Limnol. Oceanog. 11: 338–290. DOI: 10.4319/lo.1966.11.3.0338
  • 7. Corte Rosaria, J. & Martin E.R. (2010). Behavioral Changes in Freshwater Crab Barytelphusa cunicularis after Exposure to Low Frequency Electromagnetic Fields. World J. Fish. Mar. Sci. 2(6): 487–494
  • 8. Crear, B.J. & Forteath G.N.R. (2002). Feeding has the largest effect on the ammonia excretion rate of the southern rock lobster, Jasus edwardsii, and the western rock lobster, Panulirus cygus. Aquac. Eng. 26: 239–250. DOI:10.1016/S0144-8609(02)00033-X
  • 9. Czerniejewski, P. & Rybczyk A. (2008). Body weight, morphometry, and diet of the mud crab Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra Estuary, Poland. Crustaceana. 81(11): 1289–1299. DOI: 10.1163/156854008X369483
  • 10. Diamond, D.W., Scott L.K., Forward R.B.Jr. & Kirby-Smith W. (1989). Respiration and osmoregulation of the estuarine crab Rhithropanopeus harrisii (Gould): effect of the herbicide, alachlor. Comp. Biochem. Physiol. 93A: 313–318. DOI: 0.1016/0300-9629(89)90043-1
  • 11. Elliott, J.M. & Davison W. (1975). Energy equivalents of oxygen consumption in animal energetic. Oecologia. 19:195–201
  • 12. Forward, R.B.Jr. (2009). Larval Biology of the Crab Rhithropanopeus harrisii (Gould): A Synthesis. Biol. Bull. 216(3): 243–256
  • 13. Fowler, A.E., Forsström T., von Numers M. & Vesakoski O. (2013). The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat. Inv. 8(1): 89–96. DOI: 0.3391/ai.2013.8.1.10.
  • 14. Gnaiger, E. & Bitterlich G. (1984). Proximate biochemical composition and caloric content calculate from elemental CHN analysis: a stoichiometric concept. Oecologia. 62: 289–298.
  • 15. Gonçalves, F., Ribeiro R. & Soares M.V.M. (1995). Rhithropanopeus harrisii (Gould), an American crab in the Estuary of the Mondego River. J. Crust. Biol. 15(4): 756–762. DOI: 10.2307/1548824.
  • 16. Guerin, J.L. & Stickle W.B. (1992). Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Mar. Biol. 114(3): 391–396. DOI: 10.1007/BF00350029
  • 17. Hartnoll, R.G. (1982). Growth in the Biology of Crustacea. In D.E. Bliss (Eds.), Embryology, Morphology and Genetics 2 (pp 116–196). Academic Press.
  • 18. Hegele-Drywa, J. & Normant M. (2014). Non-native crab Rhithropanopeus harrisii (Gould, 1984) — a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia. 56(1): 125–139. DOI: 10.5697/oc.56-1.125
  • 19. Hochachka, P.W. (1991). Temperature: the ectothermy option. In P.W. Hochachka & T.P. Mommsen (Eds.), Biochemistry and molecular ecology of fishes (pp 313–322). Amsterdam, Elsevier.
  • 20. Hulathduwa, Y.D., Stickle W.B. & Brown K.M. (2007). The effect of salinity on survival, bioenergetics and predation risk in the mud crabs Panopeus simpsoni and Eurypanopeus depressus. Mar. Biol. 152: 363–370.
  • 21. Hutchison, V.H. & Dupré R.K. (1992). Thermoreulation. In M.E. Feder & W.W. Burggren (Eds.), Environmental physiology of the amphipods (pp 206–249). University of Chicago Press.
  • 22. Iseda, M., Otani M. & Kimura T. (2007). First record of an introduced crab Rhithropanopeus harrisii (Crusteacea: Brachyura: Panopeidae) in Japan. JPN. J. Benthol. 62: 39–44.
  • 23. Jakubowska M. & Normant M. (2011). Effect of temperature on the physiology and bioenergetics of adults of the Chinese mitten crab Eriocheir sinensis: considerations for a species invading cooler waters. Mar. Freshwater. Behav. Physiol. 44(3): 171–183. DOI:10.1080/10236244.2011.598283
  • 24. Kinne, O. & Rotthauwe H.W. (1952). Biologische Beobachtungen und Untersuchungen über die Blutkonzentration an Heteropanope tridentatus Maitland (Decapoda). Kieler Meeresforsch. 8: 212–217 (in German).
  • 25. Klekowski, R.Z. & Fischer Z. (1993). Bioenergetyka ekologiczna zwierząt zmiennocieplnych. Warszawa, PAN (in Polish).
  • 26. Klekowski, R.Z. & Opaliński K.W. (1993). Metabolizm energetyczny. In R.Z. Klekowski & Z. Fisher (Eds.), Bioenergetyka ekologiczna zwierząt zmiennocieplnych (pp 35–82). Polska Akademia Nauk, Wydział II Nauk Biologicznych.
  • 27. Kondzela, C.M. & Shirley T.C. (1993). Survival, feeding, and growth of juvenile Dungeness crabs from southeastern Alaska reared at different temperatures. J. Crust. Biol. 13: 25–35
  • 28. Koroleff, F. (1976). Determination of nutrients. In K. Grasshoff, K. Kremling & M. Ehrhardt (Eds.), Methods of seawater analysis (pp 159–229). New York, Weinheim.
  • 29. Kotta, J. & Ojaveer H. (2012). Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est. J. Ecol. 61(4): 293–298. DOI: 10.3176/eco.2012.4.04
  • 30. Kujawa, S. (1957). Biology and culture of the crab Rhithropanopeus harrisii (Gould) subsp. tridentatus (Maitland) from Vistula Lagoon. Wszechświat. 2: 57–59
  • 31. Lee, S.Y. (1997). Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa. Mar. Ecol. Prog. Ser. 159: 275–284
  • 32. Lucas, A. (1993). Bioénergétique Des Animaux Aquatiques. Paris, Masson (in French).
  • 33. Maltby, L., Naylor C. & Calow P. (1990). Effect of stress on a freshwater benthic detritivore: Scope for growth in. Ecotox. Environ. Safety. 9(3): 285–291. DOI: 10.1016/0147-6513(90)90030-9
  • 34. McCue, M.D. (2006). Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. 144 A: 381–394. DOI: 10.1016/j.cbpa.2006.03.011
  • 35. Normant, M., Chrobak M. & Szaniawska A. (2002). Energy value and chemical composition (CHN) of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae) from the Baltic Sea. Therm. Acta. 394: 233–237. DOI: 10.1016/S0040-6031(02)00259-9
  • 36. Normant, M. & Gibowicz M. (2008). Salinity induced changes in haemolymph osmolality and total metabolic rate of the mud crab Rhithropanopeus harrisii Gould, 1841 from Baltic coastal waters. J. Exp. Mar. Biol. Ecol. 355(2): 145–152. DOI: 10.1016/j.jembe.2007.12.014
  • 37. Normant, M., Dziekoński M., Drzazgowski J. & Lamprecht I. (2007). Metabolic investigations of aquatic organisms with a new twin heat conduction calorimeter. Therm. Acta. 458(1–2): 101–106. DOI: 10.1016/j.tca.2007.01.025
  • 38. Normant, M., Król M. & Jakubowska M. (2012). Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. (416–417): 215–220. DOI:10.1016/j.jembe.2012.01.001
  • 39. Normant, M. & Lamprecht I. (2006). Does scope for growth change as a result of salinity stress in the amphipod Gammarus oceanicus? J. Exp. Mar. Biol. Ecol. 334(1): 158–163. DOI: 10.1016/j.jembe.2006.01.022
  • 40. Ojaveer, H., Galil B.S., Minchin D., Olenin S., Amorim A. et al. (2014). Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar. Pol. (44):160–165. DOI: 10.1016/j.marpol.2013.08.019.
  • 41. Paul, J.M., Paul A.J. & Kimker A. (1994). Compensatory feeding capacity of 2 Brachyuran crabs, Tanner and Dungeness, after starvation periods like those encountered in pots. Alaska Fish. Res. Bul. 1(2): 184–187
  • 42. Peng, S., Chen C., Shi Z. & Wang L. (2013). Amino Acid and Fatty Acid Composition of the Muscle Tissue of Yellowfin Tuna (Thunnus Albacares) and Bigeye Tuna (Thunnus Obesus). Journal of Food and Nutrition Research. 1(4): 42–45. DOI: 10.12691/jfnr-1-4-2
  • 43. Pigliucci, M. & Preston K. 2004. The Evolutionary Biology of Complex Phenotypes. Oxford, Oxford University Press.
  • 44. Pirestani, S., Ali Sahari M., Barzegar M. & Seyfabadi S.J. (2009). Chemical compositions and minerals of some commercially important fish species from the South Caspian Sea. International Food Research Journal. 16: 39–44.
  • 45. Radford, C.A., Marsden I.M. & Davison W. (2004). Temporal variation in the specific dynamic action of juvenile New Zealand rock lobsters, Jasus edwardsii. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 139A: 1–9. DOI:10.1016/j.cbpb.2004.02.015
  • 46. Regnault, M. (1987). Nitrogen excretion in marine and fresh-water crustacean. Biol. Rev. 62(1): 1–24. DOI: 10.1111/j.1469-185X.1987.tb00623.x
  • 47. Robertson, R.F., El-Haj A.J., Clarke A. & Taylor E.W. (2001). Effects of temperature on specific dynamic action and protein synthesis rates in the Baltic isopod crustacean, Saduria entomon. J. Exp. Mar. Biol. Ecol. 262(1): 113–129. DOI: 10.1016/S0022-0981(01)00286-6
  • 48. Roche, D.G. & Torchin M.E. (2007). Established population of the North American Harris mud crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat. Inv. 2(3): 155–161. DOI:10.3391/ai.2007.2.3.1
  • 49. Romero, M.C., Vanella F., Tapella F. & Lovrich G.A. (2006). Assimilation and oxygen uptake associated with two different feeding habits of Munida gregaria (=M. subrugosa) (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 333(1): 40–48. DOI: 10.1016/j.jembe.2005.11.018
  • 50. Rosas, C., Cuzon G., Pascual C., Gaxiola G. et al. (2007). Energy balance of Octopus maya fed crab or artificial diet. Mar. Biol. 152: 371–381. DOI: 10.1007/s00227-007-0692-2
  • 51. Rychter, A. (1997). Effect of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp. tridentatus (Maitland) (Crustacea: Decapoda). Oceanologia. 39(3): 325–335
  • 52. Sãnchez, A., Pascual C., Sãnchez A., Vargas-Albores F. et al. (2002). Acclimation of Adult Males of Litopenaeus Setiferus Exposed at 27 °C and 31 °C: Bioenergetic Balance. In: E E. Esobar-Briones & F. Alvarez (Eds.), Modern approaches to the study of Crustacea (pp 45–52). New York, Kluwer Academic/Plenum Publishers
  • 53. Schmidt-Nielsen, K. (1997). Fizjologia zwierząt: Adaptacja do środowiska. Warszawa, PWN.
  • 54. Schlichting, C.D. & Pigliucci M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates.
  • 55. Schröer, M., Wittmann A.C., Grüner N., Steeger H.U., Bock C., Paul R. & Pörtner H.O. (2009). Oxygen limited thermal tolerance and performance in the lugworm Arenicola marina: a latitudinal comparison. J. Exp. Mar. Biol. Ecol. 372, 22–30.
  • 56. Sébert, P., Pequeux A., Simon B. & Barthelemy L. (1995). Effects of hydrostatic pressure and temperature on the energy metabolism of the Chinese crab (Eriocheir sinensis) and the yellow eel (Anguilla Anguilla). Comp. Biochem. Physiol. 112(1): 131–136. DOI: 10.1016/0300-9629(95)00079-M
  • 57. Smith, R.I. (1967). Osmotic regulation and adaptive reduction of water permeability in a brackish-water crab, Rhithropanopeus harrisii (Brachyura: Xanthidae). Biological Bulletin. 133: 643–658
  • 58. Turoboyski, K. (1973). Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar. Biol. 23(4): 303–313. DOI: 10.1007/BF00389338
  • 59. Vega-Villasante, F., Nolasco H. & Civera R. (1993). The digestive enzymes of the pacific brown shrimp Penaeus californiensis.: I-Properties of amylase activity in the digestive tract. Comp. Biochem. Phisiol. Part B: Comparative Biochemistry. 106(3): 547–550.
  • 60. Wallace, J.C. (1973). Feeding, starvation and metabolic rate in the Shore crab Carcinus maenas. Mar. Biol. 20: 277–281. DOI: 10.1007/BF00354271
  • 61. Weihrauch, D., Wilkie M.P. & Walsh P.J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Exp. Biol. 212: 1716–1730. DOI: 10.1242/jeb.036103
  • 62. Whiteley, N.M., Roberston R.F., Meagor J., El Haj A. J. & Taylor E.W. (2001). Protein synthesis and specific dynamic action in crustaceans: effects of temperature. Compar. Biochem. Pysiol. Mol. Integr. Physiol. 128(3): 593–604. DOI: 10.1016/S1095-6433(00)00337-8
  • 63. Willmer, P., Stone G. & Johnson J. (2000). Environmental physiology of animals. Metabolism and energy. Oxford, Blackwell Science.
  • 64. Winberg, G.G. (1960). Rate of metabolism and food requirements of fishes. Transl. Ser. Fish. Res. Bd. Can. 194–202.
  • 65. Wolff, M. & Cerda G. (1992). Feeding Ecology of the crab Cancer Polyodon in La Herradura Bay, northern Chile. Feeding chronology, food intake, gross growth and ecological efficiency. Mar. Ecol. Prog. Ser. 89: 213–219. DOI: 10.3354/meps089213
  • 66. Wyban, J., Walsh W.A. & Godin D.M. (1995). Temperature effects on growth, feeding rate and food conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture. 138: 267–279. DOI: 10.1016/0044-8486(95)00032-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73673071-bed3-400f-9e72-d4737517db47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.