PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Latitudinal and archipelago effect on the composition, distribution, and abundance of zooplanktonic organisms in the Gulf of California

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The upper Gulf of California is one of the most energetic regions owing to its tidal range and strong tidal currents, making the upper gulf and the archipelago zone highly turbulent regions; the abundance of zooplankton should be associated with mixing phenomena. We aimed to determine the latitudinal distribution of zooplanktonic organisms in this region and the influence of the islands on their distribution and abundance using historical data. Distribution of abundance followed the current patterns, the archipelago influences abundance favorably but does not affect diversity. Latitudinal zooplankton richness had a quasi-parabolic shape. A decrease in richness was observed at 27.5°N, in the archipelago region, with maximum richness at 26.5°N and 28.5°N. The distribution of latitudinal ranges is consistent with geometric constraints models; taxa with wide ranges are in the central area, while those with narrow ranges are near the boundaries and the Upper Gulf. Zooplankton responds in some way to the existence of the southern boundary as shown by the decrease of richness in this region. At the whole scale of the Gulf, the distribution of richness followed geometric constraints model, while at smaller scales, distribution and abundance are conditioned by the hydrodynamics of the Gulf. We compared zooplankton spatial distribution with Sea Level Anomaly, Sea Surface Temperature, and Chlorophyll-a concentrations from Copernicus to establish relationships between these factors. We performed Cluster and Redundancy Analysis to characterize similarities between stations in terms of biomass and taxon composition and to assess the importance of environmental variables on the distribution of zooplankton.
Czasopismo
Rocznik
Strony
371--385
Opis fizyczny
Bibliogr. 72 poz., map., rys., wykr.
Twórcy
  • Ecology and Aquatic Biodiversity Unit, Institute of Marine Sciences and Limnology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
  • Ecology and Aquatic Biodiversity Unit, Institute of Marine Sciences and Limnology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
  • Doctoral Program in Environmental Sciences, Institute of Basic Sciences and Engineering, the Autonomous University of the State of Hidalgo, Pachuca, Hidalgo, Mexico
  • Ecology and Aquatic Biodiversity Unit, Institute of Marine Sciences and Limnology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
  • Ecology and Aquatic Biodiversity Unit, Institute of Marine Sciences and Limnology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
  • Mazatlán Academic Unit, Institute of Marine Sciences and Limnology, National Autonomous University of Mexico (UNAM), Mazatlán, Sinaloa, Mexico
Bibliografia
  • 1. Álvarez-Borrego, S., Lara-Lara, J.R. 1991. The physical environment and primary productivity on the Gulf of California. In: Dauphin, J.P., Simoneit, B. (eds.), The Gulf and Peninsular Province of the Californias. AAPG Bull., Tulsa, 555-567.
  • 2. Alvariño, A., 1971. Siphonophores of the Pacific with a review of the world distribution. Bull. Scripps Inst. Oceanogr. 16, 432 pp.
  • 3. Ambriz-Arreola, I., Gómez-Gutiérrez, J., Franco-Gordo, M., del, C., Palomares-García, R.J., Sánchez-Velasco, L., Robinson, C.J., Seibel, B.A., 2017. Vertical pelagic habitat of euphausiid species assemblages in the Gulf of California. Deep Sea Res. Pt. I Oceanogr. Res. Pap. 123, 75-89. https://doi.org/10.1016/j.dsr.2017.03.008
  • 4. Bakun, A., 1997. Patterns in the ocean: ocean processes and marine population dynamics. Oceanogr. Lit. Rev. 44, 530.
  • 5. Bandy, O.L., 1961. Distribution of Foraminifera, Radiolaria, and diatoms in sediments of the Gulf of California. Micropaleontology 7 (1), 1-26.
  • 6. Beers, J.R., 1976. Determination of zooplankton biomass. In: Steedman, H.F. (Ed.), Zooplankton fixation and preservation. Unesco Press, Paris, 35-84.
  • 7. Beltrán-Castro, J.R., Hernández-Trujillo, S., Gómez-Gutiérrez, J., Trasviña-Castro, A., González-Rodríguez, E., Aburto-Oropeza, O., 2020. Copepod species assemblage and carbon biomass during two anomalous warm periods of distinct origin during 2014-2015 in the southern Gulf of California. Cont. Shelf Res. 207, 104215. https://doi.org/10.1016/j.csr.2020.104215
  • 8. Blanchet, F.G., Legendre, P., Borcard, D., 2008. Forward selection of explanatory variables. Ecology 89, 2623-2632. https://doi.org/10.1890/07-0986.1
  • 9. Borcard, D., Gillet, F., Legendre, P., 2018. Numerical ecology with R. Use R!. (2018)
  • 10. Brayard, A., Escarguel, G., Bucher, H., 2005. Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects? J. Zoolog. Syst. Evol. Res. 43,3. https://doi.org/10.1111/j.1439-0469.2005.00311.x.
  • 11. Brierley, A.S., 2017. Plankton. Curr. Biol. 27 (11), R478-R483. https://doi.org/10.1016/j.cub.2017.02.045
  • 12. Bradshaw, J.S., 1959. Ecology of living planktonic Foraminifera in the north and equatorial Pacific Ocean. Cushing Found. Foram. Res., Contrib. 10, 25-64.
  • 13. Brinton, E., Fleminger, A., Causey, D., 1986. The temperate and tropical planktonic biotas of the Gulf of California. CalCOFI Rep 27, 228-266.
  • 14. Carson, H., Hentschel, B., 2006. Estimating the dispersal potential of polychaete species in the Southern California Bight: Implications for designing marine reserves. Mar. Ecol. Prog. Ser. 316, 105-113. https://doi.org/10.3354/meps316105
  • 15. Carbajal, N., Backhaus, J.O., 1998. Simulation of tides, residual flow and energy budget in the Gulf of California. Oceanol. Acta 21, 429-446. https://doi.org/10.1016/S0399-1784(98)80028-5
  • 16. CMEMS, 2022. Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed (1993-Ongoing). https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_L4_MY_008_047/INFORMATION, https://doi.org/10.48670/moi-00148
  • 17. Colwell, R.K., 2006. RangeModel A Monte Carlo simulation tool for assessing geometric constraints on species richness. Version 5. User’s Guide and application published at: http://viceroy.eeb.uconn.edu/rangemodel.
  • 18. Colwell, R.K., Hurtt, G.C., 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144, 570-595. https://doi.org/10.1086/285695
  • 19. Colwell, R.K., Lees, D.C., 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70-76. https://doi.org/10.1016/S0169-5347(99)01767-X
  • 20. Colwell, R.K., Rahbek, C., Gotelli, N.J., 2005. The mid-domain effect: there’s a baby in the bathwater. Am. Nat. 166, E149-E154.
  • 21. Colwell, R.K., Rahbek, C., Gotelli, N.J., 2004. The mid-domain effect and species richness patterns: what have we learned so far? Am. Nat. 163, 1-23.
  • 22. Contreras-Catala, F., Sánchez-Velasco, L., Beier, E., Godínez, V.M., Barton, E.D., Santamaría-del-Angel, E., 2016. Effects of Geostrophic Kinetic Energy on the Distribution of Mesopelagic Fish Larvae in the Southern Gulf of California in Summer/Fall Stratified Seasons. PLoS One 11, e0164900. https://doi.org/10.1371/journal.pone.0164900
  • 23. Cruz-Hernández, J., Sánchez-Velasco, L., Godínez, V.M., Beier, E., Palomares-García, J. R., Barton, E.D., Santamaría del Ángel, E. 2018. Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California. Crustaceana 91 (1), 63-84. https://doi.org/10.1163/15685403-0000375.
  • 24. Currie, D.J., Kerr, J.T., 2008. Tests of the Mid-Domain Hypothesis: A Review of the Evidence. Ecol. Monogr. 78, 3-18.
  • 25. Currie, W.J.S., Roff, J.C., 2006. Plankton are not passive tracers: Plankton in a turbulent environment. J. Geophys. Res. Ocean. 111. https://doi.org/10.1029/2005JC002967
  • 26. Esquivel-Herrera, A., Esqueda-Escárcega, G.M., Hernández, S., 2000. Variaciones de los volúmenes zooplanctónicos en el centro de actividad biológica del Golfo de California. In: Lluch—Belda, D., Elorduy-Garay, J., Lluch-Cota, S.E., Ponce-Díaz, G. (Eds.), BAC: Centros de Actividad Biológica Del Pacífico Mexicano. Centro de Investigaciones Biológicas del Noroeste, S.C. BCS,. La Paz, 265-275.
  • 27. Esler, J.G., Polvani, L., 2004. Kelvin-Helmholtz Instability of Potential Vorticity Layers: A Route to Mixing. J. Atmos. Sci. 61, 1392-1405.
  • 28. Färber-Lorda, J., Trasviña, A., Cortés-Verdín, P., 2010. Summer distribution of euphausiids in the entrance of the Sea of Cortés in relation to hydrography. Deep Sea Res. Pt. II 57, 631-641. https://doi.org/10.1016/j.dsr2.2009.10.012
  • 29. Fleminger, A., 1975. Geographical distribution and morphological divergence in American coastal-zone planktonic copepods of the genus Labidocera. Estuar. Res. I, 392-419.
  • 30. Genin, A., 2004. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Marine Syst. 50, 3-20. https://doi.org/10.1016/j.jmarsys.2003.10.008
  • 31. Gil-Zurita, A., 1981. Contribución al conocimiento del zooplancton del Golfo de California, México. Secretaría de Marina, INV. OCEAN/B-81-03.
  • 32. Gilbert, J.Y., Allen, W.E., 1943. The phytoplankton of the Gulf of California obtained by the “E.W. Scripps” in 1939 and 1940. J. Mar. Res. 5 (2), 89-110.
  • 33. Gray, J.S., 2001. Marine diversity: the paradigms in the patterns of species richness examined. Sci. Mar. 65, 41-56.
  • 34. Hernández-Alcántara, P., Salas-de-León, D.A., Solís-Weiss, V., Monreal-Gómez, M.A., 2013. Geographical patterns in species richness of the benthic polychaetes in the continental shelf of the Gulf of California, Mexican Pacific. Helgol. Mar. Res. 67, 579-589. https://doi.org/10.1007/s10152-013-0345-4
  • 35. Hillebrand, H., 2004. On the Generality of the Latitudinal Diversity Gradient. Am. Nat. 163. https://doi.org/10.1086/381004
  • 36. Jetz, W., Rahbek, C., 2001. Geometric constraints explain much of the species richness pattern in African birds. Proc. Natl. Acad. Sci. 98, 5661-5666. https://doi.org/10.1073/pnas.091100998
  • 37. Kendall, V.J., Haedrich, R.L., 2006. Species richness in Atlantic deep-sea fishes assessed in terms of the mid-domain effect and Rapoport’s Rule. Deep Sea Res. Pt. I 53, 506-515.
  • 38. Kiørboe, T., 2011. What makes pelagic copepods so successful? J. Plankton Res. 33 (5), 677-685. https://doi.org/10.1093/plankt/fbq159
  • 39. Kramer, D., Kalin, M.J., Stevens, E.G., Thrailkill, J.R., Zweifel, J.R., 1972. Collecting and processing data on fish eggs and larvae in the California Current. NOAA Tech. Rep. NMFS Circ. 370 pp.
  • 40. Lavín, M.F., Beier, E., Badan, A., 1997. Estructura hidrográfica y circulación del Golfo de California: Escalas estacional e interanual. In: Lavín, M.F. (Ed.), Contribuciones a La Oceanografía Física En México. Unión Geofísica Mexicana, 141-171.
  • 41. Lees, D.C., Kremen, C., Andriamampianina, L., 1999. A null model for species richness gradients: bounded range overlap of butterflies and other rainforest endemics in Madagascar. Biol. J. Linn. Soc. 67, 529-584.
  • 42. Lluch-Cota, S.E., Aragón-Noriega, E.A., Arreguín-Sánchez, F., Aurioles-Gamboa, D., Bautista-Romero, J.J., Brusca, R.C., Cervantes-Duarte, R., Cortés-Altamirano, R., del-Monte-Luna, P., Esquivel-Herrera, A., Fernández, G., Hendrickx, M.E., Hernández-Vázquez, S., Herrera-Cervantes, H., Kahru, M., Lavín, M.F., Lluch-Belda, D., Lluch-Cota, D.B., López-Martínez, J., Marinone, S.G., Nevárez-Martínez, M.O., Ortega-García, S., Palacios-Castro, E., Parés-Sierra, A., Ponce-Díaz, G., Ramírez-Rodríguez, M., Salinas-Zavala, C.A., Schwartzlose, R.A., Sierra-Beltrán, A.P., 2007. The Gulf of California: Review of ecosystem status and sustainability challenges. Prog. Oceanogr. 73, 1-26. https://doi.org/10.1016/j.pocean.2007.01.013
  • 43. Lluch-Cota, S.E., Arias-Aréchiga, J.P., 2000. Sobre la importancia de considerar la existencia de centros de actividad biológica para la regionalización del océano: El caso del Golfode California. In: Lluch-Belda, D., Elourduy-Garay, J., Lluch—Cota, S.E., Ponce-Díaz, G. (Eds.), BAC Centros de Actividad Biológica Del Pacífico Mexicano. CIB, CICIMAR y CONACYT. La Paz, BCS, 255-264.
  • 44. López-Martínez, J., Nevárez-Martínez, M.O., Leyva-Contreras, A., Sánchez, O., 2000. Análisis de tres variables oceanográficas en la región de Guaymas, Sonora, México. In: Lluch-Belda, D., Elourduy-Garay, J., Lluch-Cota, S.E., Ponce-Díaz, G.L.-C. (Eds.), BAC Centros de Actividad Biológica Del Pacífico Mexicano. La Paz, BCS, 229-254.
  • 45. López-Sandoval, D.C., Lara-Lara, J.R., Lavín, M.F., Álvarez-Borrego, S., Gaxiola-Castro, G., 2009. Primary productivity in the eastern tropical Pacific off Cabo Corrientes. Mexico. Ciencias Mar. 35 (2), 169-182. Magurran, A., 2004. Measuring biological diversity. Blackwel, Oxford, 256 pp.
  • 46. Mann, K.H., Lazier, J.R.N., 1991. Dynamics of Marine Ecosystems. In: Biological-Physical Interactions in the Oceans. Blackwell Publishing, Boston, USA, 466 pp.
  • 47. Manrique, F.A., 1978. Seasonal variation of zooplankton in the Gulf of California. In: Proc. Symp. In Warm Water Zooplankton, Dona Paula, Goa, India, 14-19 Oct. 1976. UNESCO/NIO Spec. Publ., 242-249.
  • 48. Marinone, S.G., 2003. A three-dimensional model of the mean and seasonal circulation of the Gulf of California. J. Geophys. Res. 108. https://doi.org/10.1029/2002JC001720
  • 49. Marinone, S.G., Ulloa, M.J., Parés-Sierra, A., Lavín, M.F., Cudney-Bueno, R., 2008. Connectivity in the northern Gulf of California from particle tracking in a three-dimensional numerical model. J. Marine Syst. 71, 149-158. https://doi.org/10.1016/j.jmarsys.2007.06.005
  • 50. Mauchline, J., Blaxter, J.H.S., Southward, A.J., Tyler, P.A., 1998. The biology of calanoid copepods. Academic Press, San Diego.
  • 51. McCain, C.M., 2004. The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19-31.
  • 52. Mertz, G., Wright, D.G., 1992. Interpretations of the JEBAR Term. J. Phys. Oceanogr. 22, 301-305.
  • 53. Monreal-Jiménez, R., Salas-de-León, D.A., Monreal-Gómez, M.A., Carbajal, N., Contreras-Tereza, V.K., 2021. Estimation of the electric current density in the Gulf of California induced by the M2 tidal current. Cont. Shelf Res. 214, 104335. https://doi.org/10.1016/j.csr.2020.104335
  • 54. Ortiz-Burgos, S., 2016. Shannon-Weaver Diversity Index. In: Kennish, M.J. (Ed.), Encyclopedia of estuaries. Encyclopedia of Earth sciences series. Springer, Dordrecht.
  • 55. Palomares-García, R.J., Gómez-Gutiérrez, J., Robinson, C.J., 2013. Winter and summer vertical distribution of epipelagic copepods in the Gulf of California. J. Plankton Res. 35, 1009-1026. https://doi.org/10.1093/plankt/fbt052
  • 56. Pineda, J., 1993. Boundary effects on the vertical ranges of deep-sea benthic species. Deep Sea Res. Pt. I 40, 2179-2192.
  • 57. Pineda, J., Caswell, H., 1998. Bathymetric species-diversity patterns and boundary constraints on vertical range distributions. Deep Sea Res. Pt. II 45, 83-101.
  • 58. Postel, L., Fock, H., Hagen, W., 2000. Biomass and abundance. In: Harris, R., Wiebe, P., Lenz, J., Skjoldal, H.R., Huntley, M. (Eds.), ICES Zooplankton Methodology Manual. Academic Press, 55-81. https://doi.org/10.1016/B978-012327645-2/50004-9
  • 59. Richardson, A.J., 2008. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279-295. https://doi.org/10.1093/icesjms/fsn028
  • 60. Rocha-Díaz, F., Monreal-Gómez, M.A., Coria-Monter, E., Salas de León, D., Durán-Campos, E., Merino-Ibarra, M., 2021. Copepod abundance distribution in relation to a cyclonic eddy in a coastal environment in the southern Gulf of California. Cont. Shelf Res. 222, 104436. https://doi.org/10.1016/j.csr.2021.104436
  • 61. Roden, G.I., 2000. Oceanographic aspects of the Gulf of California. In: Van Andel, T.H., Shor, G.G. (Eds.), Marine Geology in the Gulf of California. AAPG Memoir 3, 30-58. https://doi.org/10.1306/M3359C2
  • 62. Rodriguero, M.S., Gorla, D.E., 2004. Latitudinal gradient in species richness of the New World Triatominae (Reduviidae). Glob. Ecol. Biogeogr. 13, 75-84. https://doi.org/10.1111/j.1466-882X.2004.00071.x
  • 63. Salas-de-León, D.A., Carbajal-Pérez, N., Monreal-Gómez, M.A., Barrientos-McGregor, G., 2003. Residual circulation and tidal stress in the Gulf of California. J. Geophys. Res. 108. https://doi.org/10.1029/2002JC001621
  • 64. Salas-de-León, D.A., Carbajal, N., Monreal-Gómez, M.A., Gil-Zurita, A., 2011. Vorticity and mixing induced by the barotropic M2 tidal current and zooplankton biomass distribution in the Gulf of California. J. Sea Res. 66, 143-153. https://doi.org/10.1016/j.seares.2011.05.011
  • 65. Sameoto, D., Wiebe, P., Runge, J., Postel, L., Dunn, J., Miller, C., Coombs, S., 2000. Collecting zooplankton. In: Harris, R.P., Wiebe, P.H., Lenz, J., Skjoldal, H.R., Huntley, M. (Eds.), ICES Zooplankton Methodology Manual. Academic Press, 55-78.
  • 66. Sánchez-Velasco, L., Valdez-Holguı´n, J.E., Shirasago, B., Cisneros-Mata, M.A., Zarate, A., 2002. Changes in the Spawning Environment of Sardinops caeruleus in the Gulf of California during El Niño 1997—1998. Estuar. Coast. Shelf Sci. 54, 207-217. https://doi.org/10.1006/ecss.2001.0840
  • 67. Sarkisyan, A.S., Ivanov, V.F., 1971. Joint effect of baroclinicity and bottom relief as an important factor in the dynamics of the sea current. Investiya Acad. Sci. USSR, Atmos. Ocean Sci. 1, 173-188.
  • 68. Silveyra-Bustamante, A.A., Gómez-Gutiérrez, J., González-Rodríguez, E., Sánchez, C., Schiariti, A., Mendoza-Becerril, M.A., 2020. Seasonal variability of gelatinous zooplankton during an anomalously warm year at Cabo Pulmo National Park. Mexico. Lat. Am. J. Aquat. Res. 48 (5), 779-793. https://doi.org/10.3856/vol48-issue5-fulltext-2441
  • 69. Souza, A.J.G., 1991. Mixing in the Midriff Island region of the Gulf of California. University College of North Wales, Mexico. Souza, A.J., Alvarez, L.G., Dickey, T., 2004. Tidally induced turbulence and suspended sediment. Geophys. Res. Lett. 31, L20309. https://doi.org/10.1029/2004GL021186
  • 70. Trégouboff, G., Rose, M., 1957. Manuel de planctonologie Méditerranéenne. Centre National de la Recherche Scientifique, Paris.Whitehead, D.W., Jakes-Cota, U., Pancaldi, F., Galván-Magaña, F., González-Armas, R., 2020. The influence of zooplankton communities on the feeding behavior of whale shark in Bahia de La Paz, Gulf of California. Revista Mexicana de Biodiversidad 91, e913054. https://doi.org/10.22201/ib.20078706e.2020.91.3054
  • 71. Wiebe, P., 1988. Functional regression equations for zooplankton displacement volume, wet weight, dry weight, and carbon: a correction. Fish. Bull. 86, 833-835.
  • 72. Willig, M.R., Lyons, S.K., 1998. An Analytical Model of Latitudinal Gradients of Species Richness with an Empirical Test for Marsupials and Bats in the New World. Oikos 81, 93-98. https://doi.org/10.2307/3546471
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7361f238-c6f3-427b-831a-1ec212d08778
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.