PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating deep learning, social networks, and big data for healthcare system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to propose a deep learning model based on big data for the healthcare system to predict social network data. Social network users post large amounts of healthcare information on a daily basis and at the same time hospitals and medical laboratories store very large amounts of healthcare data, such as X-rays. The authors provide an architecture that can integrate deep learning, social networks, and big data. Deep learning is one of the most challenging areas of research and is becoming increasingly popular in the health sector. It uses deep analysis to extract knowledge with optimum precision. The proposed architecture consists of three layers: the deep learning layer, the big data layer, and the social networks layer. The big data layer includes data for health care, such as X-ray images. For the deep learning layer, three Convolution Neuronal Network models are proposed for X-ray image classification. As a result, social network layer users can access the proposed system to predict their X-ray image posts.
Rocznik
Strony
art. no. 20190043
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • LIMPAF Laboratory, Computer Science Department, Faculty of Sciences and Applied Sciences, University of Bouira, Bouira, Algeria; El-Oued University, El-Oued, Algeria
  • Computer Science Department, El-Oued University, El-Oued, Algeria
autor
  • University of Bouira, Bouira, Algeria
  • Computer Science Department, El-Oued University, El-Oued, Algeria
  • Computer Science Department, El-Oued University, El-Oued, Algeria
Bibliografia
  • [1] Schein R, Wilson K, Keelan JE. Literature review on effectiveness of the use of social media: a report for Peel Public Health. [Region of Peel], Peel Public Health, 2011.
  • [2] Expand your clinical knowledge, view and discuss real world clinical cases with healthcare professional from every specialty from Figure 1. Available at: https://figure1.com.
  • [3] Open biomedical initiative. Available at: http://www.openbiomedical.org.
  • [4] The National Library of Medicine presents MedPix. Available at: https://medpix.nlm.nih.gov/home.
  • [5] Eichstaedt JC, Schwartz HA, Kern ML, Park G, Labarthe DR, Merchant RM, et al. Psychological language on Twitter predicts county-level heart disease mortality. Psychol Sci 2015;26:159-69.
  • [6] Achrekar H, Gandhe A, Lazarus R, Yu SH, Liu B. Predicting flu trends using twitter data. In 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) 2011:702-7. DOI: 10.1109/INFCOMW.2011.5928903.
  • [7] Hirose H, Wang L. Prediction of infectious disease spread using Twitter: a case of influenza. In 2012 Fifth International Symposium on Parallel Architectures, Algorithms and Programming 2012;100-5. DOI: 10.1109/PAAP.2012.23.
  • [8] Koh HC, Tan G. Data mining applications in healthcare. J Healthcare Inform Manag 2011;19:65.
  • [9] Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Informatics 2008;77:81-97.
  • [10] Canlas RD. Data mining in healthcare: current applications and issues. School of Information Systems & Management, Carnegie Mellon University, Australia, 2009.
  • [11] Hosseinkhah F, Ashktorab H, Veen R, Owrang O. M. Mehdi. Challenges in data mining on medical databases. In Database Technologies: Concepts, Methodologies, Tools, and Applications 2009;4:1393-1404.
  • [12] Kumari M, Godara S. Comparative study of data mining classification methods in cardiovascular disease prediction, 2011.
  • [13] Dangare CS, Apte SS. Improved study of heart disease prediction system using data mining classification techniques. Int J Comp Appl 2012;47:4744-8.
  • [14] Gupta S, Kumar D, Sharma A. Data mining classification techniques applied for breast cancer diagnosis and prognosis. Indian J Comp Sci Eng 2011;2188-95.
  • [15] Khan MU, Choi JP, Shin H, Kim M. Predicting breast cancer survivability using fuzzy decision trees for personalized healthcare. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008:5148-51. DOI: 10.1109/IEMBS.2008.4650373.
  • [16] Chien C, Pottie GJ. A universal hybrid decision tree classifier design for human activity classification. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012;1065-8. DOI: 10.1109/EMBC.2012.6346118.
  • [17] Moon SS, Kang SY, Jitpitaklert W, Kim SB. Decision tree models for characterizing smoking patterns of older adults. Exp Syst 2012;39:445-51.
  • [18] Chang CL, Chen CH. Applying decision tree and neural network to increase quality of dermatologic diagnosis. Expert Syst Appl 2009;36:4035-41.
  • [19] Fei SW. Diagnostic study on arrhythmia cord is based on particle swarm optimization-based support vector machine. Exp Syst Appl 2010;37:6748-52.
  • [20] Huang CL, Liao HC, Chen MC. Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Exp Syst Appl 2008;34:578-87.
  • [21] Avci E. A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier. Exp Syst Appl 2009;36:10618-26.
  • [22] Abdi MJ, Giveki D. Automatic detection of erythemato-squamous diseases using PSO–SVM based on association rules. Eng Appl Artif Intel 2013;26:603-8.
  • [23] Er O, Yumusak N, Temurtas F. Chest diseases diagnosis using artificial neural networks. Exp Syst Appl 2010;37:7648-55.
  • [24] Das R, Turkoglu I, Sengur A. Effective diagnosis of heart disease through neural networks ensembles. Exp Syst Appl 2009;36:7675-80.
  • [25] Gunasundari S, Baskar S. Application of artificial neural network in identification of lung diseases. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) 2009:1441-4. DOI: 10.1109/NABIC.2009.5393702.
  • [26] Liu KF, Lu CF. BBN-based decision support for health risk analysis. In 2009 Fifth International Joint Conference on INC, IMS and IDC 2009;696-702.
  • [27] Gennings C, Ellis R, Ritter JK. Linking empirical estimates of body burden of environmental chemicals and wellness using NHANES data. Environ Int 2012;39:56-65.
  • [28] Agarwal S. Weighted support vector regression approach for remote healthcare monitoring. In 2011 International Conference on Recent Trends in Information Technology (ICRTIT) 2011:969-74. DOI: 10.1109/ICRTIT.2011.5972437.
  • [29] Tapia JJ, Morett E, Vallejo EE. A clustering genetic algorithm for genomic data mining. In Foundations of Computational Intelligence 2009;249-75.
  • [30] Escudero J, Zajicek JP, Ifeachor E. Early detection and characterization of Alzheimer’s disease in clinical scenarios using bioprofile concepts and K-means. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011;6470-3.
  • [31] Chipman H, Tibshirani R. Hybrid hierarchical clustering with applications to microarray data. Biostatistics. 2005;21:286-301.
  • [32] Chen TS, Tsai TH, Chen YT, Lin CC, Chen RC, Li SY, et al. A combined K-means and hierarchical clustering method for improving the clustering efficiency of microarray. In 2005 International Symposium on Intelligent Signal Processing and Communication Systems 2005;405-8.
  • [33] Belciug S. Patients length of stay grouping using the hierarchical clustering algorithm. Ann Univ Craiova-Math Comput Sci Ser 2009;36:79-84.
  • [34] Celebi ME, Aslandogan YA, Bergstresser PR. Mining biomedical images with density-based clustering. In International conference on information technology: coding and computing (ITCC’05)-volume II 2005;1:163-8.
  • [35] Ji Y, Ying H, Tran J, Dews P, Mansour A, Massanari RM. Mining infrequent causal associations in electronic health databases. In 2011 IEEE 11th International Conference on Data Mining Workshops 2011;421-8.
  • [36] Soni S, Vyas OP. Using associative classifiers for predictive analysis in health care data mining. Int J Comp Appl 2010;4:33-7.
  • [37] Widmer A, Schaer R, Markonis D, Müller H. Gesture interaction for content-based medical image retrieval. In Proceedings of International Conference on Retrieval 2014;503.
  • [38] Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, et al. The Human Connectome Project: a data acquisition perspective. Neuroimage 2012;1:2222-31.
  • [39] Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. In Proceedings of the International Conference on Machine Learning, 2013.
  • [40] Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6:26094.
  • [41] Lipton ZC, Kale DC, Elkan C, Wetzel R. Learning to diagnose with LSTM recurrent neural networks. CoRR. arXiv preprint arXiv:1511.03677, 2015.
  • [42] Phan N, Dou D, Piniewski B, Kil D. Social restricted Boltzmann machine: human behavior prediction in health social networks. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015;424-31.
  • [43] Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chest X-ray8: hospital-scale chest X-ray database and benchmarks on weaklysupervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on computer vision and pattern recognition 2017:2097-106.
  • [44] Chest X-ray dataset. Available at: https://ceb.nlm.nih.gov/repositories/tuberculosis-chest-X-ray-image-data-sets.
  • [45] LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, et al. Handwritten digit recognition with a back-propagation network. In Advanced Neural Information Processing Systems 1990:396-404.
  • [46] Python. Available at: https://python.com.
  • [47] Hadoop. Available at: http://hadoop.apache.org/.
  • [48] TensorFlow. Available at: https://www.tensorflow.org/install/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-735af7c7-ccdb-48a9-a458-dc310e0ac5fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.