Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research aimed to investigate the optimum conditions of slow sand filter (SSF) media modification by using ground Anadara granosa shell waste and the effect of the ripening period on the total coliform (TC) removal efficiency. The response surface methodology with the central composite design was conducted with three factors, namely, seeding time (2–3 weeks), running time (0–20 days), type of SSF media (i.e., river sand, A. granosa shell, and their combination), as independent variables. The results showed that the ripening period factor interacted insignificantly by improving the TC removal efficiency due to short ripening time (p > 0.05). The optimum conditions of the SSF to achieve maximum TC removal efficiency (99.70 ± 21.50%) were as follows: combination media of river sand and ground A. granosa shell waste, 2.8 weeks (20 days) of ripening period, and 20 days of operation. In conclusion, the optimum operating parameters of the slow sand filter revealed that the combination of river sand and A. granosa shell as well as prolonged ripening and running times could increase the removal efficiency of TC. Hence, the A. granosa shell has good application potential as filter media to remove TC from the municipal wastewater.
Czasopismo
Rocznik
Tom
Strony
100--111
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
autor
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
- Department of Civil Engineering Engineering, Faculty of Civil and Built Environment, Universiti Tun Hussein Onn, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
autor
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
autor
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
autor
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
autor
- Department of Environmental Engineering, Faculty of Civil Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo 60111, Indonesia
Bibliografia
- 1. Agustini T.W., Fahmi A.S., Widowati I., Sarwono A. 2011. Pemanfaatan limbah cangkang kerang simping (Amusium pleuronectes) dalam pembuatan cookies kaya kalsium. pemanfaat. limbah cangkang kerang simping (Amusium pleuronectes) dalam pembuatan cookies kaya kalsium 16, 8–13.
- 2. Al-Sahari M., Al-Gheethi A., Radin Mohamed R.M.S., Fitriani N. 2019. Inactivation of harmful algae blooms in freshwater using algicidal bacteria pseudomonas sp. From wastewater treatment plant. Ecol. Environ. Conserv, 25, S135–S139.
- 3. Ariseno I.A., Romadoni E.R., Dewi T.D. 2018. Analisis Kualitas Air Tanah untuk Air Bersih di Surabaya Selatan, 235–244.
- 4. Junaidi A., Hazmi A., Zakaria A.B., Zuki M., Mustapha M., Noordin, Abu, Jalila, Yusof N. 2007. Mineral composition of the cockle (Anadara granosa) shells of West Coast of Peninsular Malaysia and it’s potential as biomaterial for use in bone repair. UPM institutional repository, 6, 591–594.
- 5. Badan Standarisasi Nasional. 2008. SNI 03-39812008, Perencanaan Instalasi Saringan Pasir Lambat.
- 6. Bagundol T.B., Awa A.L., Enguito M. R. C. 2013. Efficiency of Slow Sand Filter in Purifying Well Water. J. Multidiscip. Stud., 2, 86–102.
- 7. Campos L.C., Su M.F.J., Graham N.J.D., Smith S.R. 2002. Biomass development in slow sand filters. Water Res., 36, 4543–4551.
- 8. Dizer H., et al. 2004. Contribution of the colmation layer to the elimination of coliphages by slow sand filtration. Water Sci. Technol, 50, 211–214.
- 9. Galvis G., Visscher J.T., Latorre J. 1998. Multi-stage filtration: an innovative water treatment technology. (IRC International Water and Sanitation Centre, 1998).
- 10. Hauwa A., Mohamed R.M.S.R., Al-Gheethi A.A., Wurochekke A.A., Amir Hashim M.K. 2018. Harvesting of Botryococcus sp. Biomass from Greywater by Natural Coagulants. Waste and Biomass Valorization, 9, 1841–1853.
- 11. Imron M.F., Titah H.S. 2018. Optimization of diesel biodegradation by Vibrio alginolyticus using BoxBehnken design. Environmental Engineering Research. Korean Society of Environmental Engineering, 23(4), 374–382. DOI: 10.4491/eer.2018.015
- 12. Joubert E.D., Pillay B. 2008. Visualisation of the microbial colonisation of a slow sand filter using an environmental scanning electron microscope. Electron. J. Biotechnol., 11, 1–7.
- 13. Khudair B.H. 2018. Improvement of Domestic Wastewater Treated Effluent from Sequencing Batch Reactor Using Slow Sand Filtration. Assoc. Arab Univ. J. Eng. Sci., 25, 159–173.
- 14. Kurniawan S.B., Imron M.F. 2019a. The effect of tidal fluctuation on the accumulation of plastic debris in the Wonorejo River Estuary, Surabaya, Indonesia. Environmental Technology & Innovation. 15, 100420. https://doi.org/10.1016/j.eti.2019.100420
- 15. Kurniawan S.B., Imron M.F. 2019b. Seasonal variation of plastic debris accumulation in the estuary of Wonorejo River, Surabaya, Indonesia. Environmental Technology & Innovation. 16, 100490. https://doi.org/10.1016/j.eti.2019.100490.
- 16. Law S.P., Lamb A.J., Melvin M. 2011. Visualisation of the establishment of a heterotrophic biofilm within the schmutzdecke of a slow sand filter using scanning electron microscopy. Biofilm J., 6, 1–7.
- 17. Logsdon G.S., Kohne R., Abel S., LaBonde S. 2002. Slow sand filtration for small water systems. J. Environ. Eng. Sci., 1, 339–348.
- 18. Maryani D., Maryani D., Masduqi A., Moesriati A. 2014. Pengaruh Ketebalan Media dan Rate filtrasi pada Sand Filter dalam Menurunkan Kekeruhan dan Total Coliform. J. Tek. ITS 3, D76–D81.
- 19. Morel A., Diener S. 2006. Greywater Management in Low and Middle-Income Countries, Review of different treatment systems for households or neighbourhoods. (Swiss Federal Institute of Aquatic Science and Technology (Eawag).
- 20. Mugnai R., Sattamini A., Albuquerque dos Santos J.A., Regua-Mangia A.H. 2015. A Survey of Escherichia coli and Salmonella in the Hyporheic Zone of a Subtropical Stream: Their Bacteriological, Physicochemical and Environmental Relationships. PloS one, 10(6), e0129382. https://doi.org/10.1371/journal.pone.0129382
- 21. Nilandita W., Pribadi A., Nengse S., Auvaria S.W. 2019. Studi Keberlanjutan IPAL Komunal di Kota Surabaya (Studi Kasus di RT 02 RW 12 Kelurahan Bendul Merisi Kota Surabaya). Al-Ard J. Tek. Lingkung, 4, 46–54.
- 22. Ni’matuzahroh et al. 2020. Behavior of schmutzdecke with varied filtration rates of slow sand filter to remove total coliforms. Heliyon 6, e03736.
- 23. Olawale O., Oyawale F.A., Adepoju T.F., Aikulolu S., Akinmoladun A.I. 2015. Optimisation of diesel polluted soil using response surface methodology. Int. Environ. Prot. Policy, 3, 194–202.
- 24. Rakić T., Kasagić-Vujanović I., Jovanović M., Jančić-Stojanović B., Ivanović D. 2014. Comparison of Full Factorial Design, Central Composite Design, and Box-Behnken Design in Chromatographic Method Development for the Determination of Fluconazole and Its Impurities. Anal. Lett., 47, 1334–1347.
- 25. Ranjan P., Prem M. 2018. SchmutzdeckeA Filtration Layer of Slow Sand Filter. Int.J.Curr.Microbiol.App.Sci., 7(7), 637-645. DOI: https://doi.org/10.20546/ijcmas.2018.707.077
- 26. Subari F., Kamaruzzaman M.A., Sheikh Abdullah S.R., Hasan H.A., Othman A.R. 2018. Simultaneous removal of ammonium and manganese in slow sand biofilter (SSB) by naturally grown bacteria from lake water and its diverse microbial community. J. Environ. Chem. Eng., 6, 6351–6358.
- 27. Surest A.H., Wardani A.R., Fransiska R. 2012. Pemanfaatan Limbah Kulit Kerang Untuk Menaikkan pH Pada Proses Pengelolaan Air Rawa Menjadi Air Bersih. J. Tek. Kim. UNSRI 18, 10–15.
- 28. Suwignyo R.A. 2005. Regrowth acceleration for rice seeds in post flooded after “plant phytoregulator” and nitrogen treatments. J. Tanam. Trop., 8, 45–52.
- 29. The World Bank. 2017. Memenuhi Kebutuhan Sanitasi Perkotaan di Indonesia.
- 30. Thirugnanasambandham K. 2017. Comparative Statistical Analysis of Photocatalytic Degradation of Reactive Yellow 145 Dye Using Response Surface Methodology and Artificial Neural Network. Environ Sci Ind., 13(6), 155.
- 31. Thirugnanasambandham K. 2018a. Biodiesel production from Cholrella minutissima microalgae: Kinetic and mathematical modelling. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. DOI: 10.1080/15567036.2018.1477872
- 32. Thirugnanasambandham K. 2018b. Study of electrochemical process conditions for the electricity production in microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–8. DOI: 10.1080/15567036.2018.1468506
- 33. Thirugnanasambandham K., Sivakumar V. 2015a. Investigation on biodiesel production from cotton seed oil using microwave irradiated transesterfication process. Environmental Progress & Sustainable Energy, 34(4), 1229–1235. DOI: 10.1002/ep.12094
- 34. Thirugnanasambandham K., Sivakumar V. 2015b. Modeling and optimization of treatment of milk industry wastewater using chitosan–zinc oxide nanocomposite. Desalination and Water Treatment, 1–9. DOI: 10.1080/19443994.2015.1102089
- 35. Visscher J.T., Paramasivam R., Raman A., Heijnen H.A. 1987. Slow Sand Filtration for Community Water Supply: Planning, design, construction, operation and maintenance. (International Reference Centre for Community Water Supply and Sanitation (IRC).
- 36. Von Sperling M. 2007. Wastewater Characteristics, Treatment and Disposal. DOI: 10.2166/9781780402086
- 37. Wang Y., Gong S., Li Y., Li Z., Fu J. 2020. Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust. Scientific Reports, 10, 2960. https://doi.org/10.1038/s41598-020-59850-2
- 38. Widhana D.H. 2017. Suramnya Mutu Air Sungai Indonesia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7356716a-6cec-4e5e-813f-37d2c5285f9c