PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometria rozmaitości modułów

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Słowa kluczowe
Rocznik
Strony
3--13
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Wydział Matematyki i Informatyki UM K ul. Chopina 12/18 87-100 Toruń
Bibliografia
  • [1] S. Balcerzyk, Wstęp do algebry homologicznej, Biblioteka Matematyczna 34, PWN, Warszawa, 1970.
  • [2] S. Balcerzyk, T. Józefiak, Pierścienie przemienne, Biblioteka Matematyczna 58, PWN, Warszawa, 1985.
  • [3] M. Вarot, J. Schröer, Module varieties over canonical algebras, J. Algebra 246 (2001), 175-192.
  • [4] J. Bender, K. Bongartz, Minimal singularities in orbit closures of matrix pencils, Linear Algebra Appl. 365 (2003), 13-24.
  • [5] G. Bobiński, Geometry of decomposable directing modules over tame algebras, J. Math. Soc. Japan, 54 (2002), 609-620.
  • [6] G. Bobiński, Geometry of regular modules over canonical algebras, Tran. Amer. Math. Soc., w druku.
  • [7] G. Bobiński, A. Skowroński, Geometry of modules over tame quasi-tilted algebras, Colloq. Math. 79 (1999), 85-118.
  • [8] G. Bobiński, A. Skowroński, Geometry of directing modules over tame algebras, J. Algebra 215 (1999), 603-643.
  • [9] G. Bobiński Geometry of periodic modules over tame concealed and tubular algebras, Algebr. Represent. Theory 5 (2002), 187-200.
  • [10] G. Bobiński, G. Zwara, Normality of orbit closures for Dynkin quivers of type A_n, Manuscripta Math. 105 (2001), 103-109.
  • [11] G. Bobiński, G. Zwara, Schubert varieties and representations of Dynkin quivers, Colloq. Math. 94 (2002), 285-309.
  • [12] G. Bobiński Normality of orbit closures for directing modules over tame algebras, J. Algebra 298 (2006), 120-133.
  • [13] K. Bongartz, A geometric version of the Morita equivalence, J. Algebra 139 (1991), 159-171.
  • [14] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 69 (1994), 575-611.
  • [15] K. Bongartz On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), 245-287.
  • [16] M. Brion, Multiplicity-free subvarieties of flag varieties, in: Commutative Algebra (Grenoble/Lyon, 2001), Contemp. Math. 331, Amer. Math. Soc., Providence, RI, 2003, 13-23.
  • [17] H. Cartan, S. Eilenberg, Homological Algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999.
  • [18] M. Domokos, H. Lenzing, Invariant theory of canonical algebras, J. Algebra 228 (2000), 738-762.
  • [19] M. Domokos Moduli spaces for representations of concealed-canonical algebras, J. Algebra 251 (2002), 371-394.
  • [20] D. Eisenbud, J. Harris, The Geometry of Schemes, Graduate Texts in Mathematics 197, Springer-Verlag, New York, 2000.
  • [21] P. Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71-103.
  • [22] Ch. Geiss, On degenerations of tame and wild algebras, Arch. Math. (Basel) 64 (1995), 11-16.
  • [23] Ch. Geiss, J. Schröer, Varieties of modules over tubular algebras, Colloq. Math. 95 (2003), 163-183.
  • [24] D. Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), 381-398.
  • [25] D. Happel, I. Reiten, S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), viii-f- 88.
  • [26] M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), 9-36.
  • [27] O. Kerner, Tilting wild algebras, J. London Math. Soc. (2) 39 (1989), 29-47.
  • [28] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser Boston Inc., Boston, MA, 1985.
  • [29] V. Lakshmibai, P. Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices 1998 (1998), 627-640.
  • [30] H. Lenzing, A. Skowroński, Quasi-titled algebras of canonical type, Colloq. Math. 71 (1996), 161-181.
  • [31] J. A. de la Peña, Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171-185.
  • [32] Ch. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École Norm. Sup. (4) 19 (1986), 275-301.
  • [33] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics 1099, Springer, Berlin, 1984.
  • [34] A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490.
  • [35] A. Skowroński, J. Weyman, Semi-invariants of canonical algebras, Manuscripta Math. 100 (1999), 391-403.
  • [36] T. A. Springer, Linear Algebraic Groups, Progress in Mathematics 9, Birkhäuser Boston Inc., Boston, MA, 1998.
  • [37] G. Zwara, Degenerations of finite-dimensional modules are given by extensions, Compositio Math. 121 (2000), 205-218.
  • [38] G. Zwara, An orbit closure for a representation of the Kronecker quiver with bad singularities, Colloq. Math. 97 (2003), 81-86.
  • [39] G. Zwara, Regularity in codimension one of orbit closures in module varieties, J. Algebra 283 (2005), 821-848.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-735538da-d8df-43a8-ae06-12cf3368330f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.