PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geodynamics of the Eurasian and Africa–Arabian collision zone as exemplified by the Black Sea–Caspian Sea region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Western Tethys meets Eastern Tethys - geodynamical, palaeoceanographical and palaeobiogeographical events : Second Symposium of the International Geoscience Programme IGCP 710 : 28th August - 3rd September, 2023, Kraków, Poland : abstract book
Języki publikacji
EN
Abstrakty
EN
The lithosphere structure and geological evolution of the Caucasus and adjacent areas is determined by its position in the continental collision zone between the Eurasian and African-Arabian lithosphere plates, where convergence is still on-going at average rate of movement 10–30 mm/per year. The region located in the central part of the collision zone represents the lithosphere fragments collage of the Tethys Ocean and its continental margins. Within this area the system of island arcs, intra- and back arc bsins existed during Neoproterozoic–Early Cenozoic. Supra-subduction, midocean ridges and within plate magmatic activity took place during Paleozoic–Early Cenozoic. In Late Cenozoic closure of the oceanic and backarc basins took place followed by the continent-continent collision, topography inversion and formation of modern structures in the region (Adamia et al., 1981, 2017; Dercourt et al., 1986). During the pre-collision stage there were not two, but three Tethys branches. The third of them is Van-Khoi oceanic branch. Number of palaeo-subduction zones (two or three?) is still debatable within the academic community. One research group (e.g. Sosson et al., 2010; Barrier et al., 2018) admits existence of two subduction zones: Peri-Arabian and Ankara-Erzincan-Sevan-Zangezur zones, whilst another group including the abstract authors refer to the presence of three subduction zones and aside from abovementioned zones consider the presence of the Khoy Ocean and third subduction zone related to one of the Neotethys branches (Adamia et al., 1981, 2017; Dercour et al., 1986; Stampfli, 2001). According to Adamia et al. (1981, 2017), Dercourt et al. (1986), Daralogöz-South Armenian block and Nakhchevan (SAB) in the Late Paleozoic–Mesozoic–Early Cenozoic represent the part of the Iranian but not the Anatolian Microcontinent.
Słowa kluczowe
Rocznik
Strony
9--10
Opis fizyczny
Bibliogr. 6 poz., rys.
Twórcy
autor
  • Iv. Javakhishvili Tbilisi State University, 1, Chavchavadze av., 0179, Tbilisi, Georgia
  • Iv. Javakhishvili Tbilisi State University, 1, Chavchavadze av., 0179, Tbilisi, Georgia
  • Iv. Javakhishvili Tbilisi State University, 1, Chavchavadze av., 0179, Tbilisi, Georgia
  • Iv. Javakhishvili Tbilisi State University, 1, Chavchavadze av., 0179, Tbilisi, Georgia
  • Iv. Javakhishvili Tbilisi State University, 1, Chavchavadze av., 0179, Tbilisi, Georgia
  • Iv. Javakhishvili Tbilisi State University, 1, Chavchavadze av., 0179, Tbilisi, Georgia
Bibliografia
  • [1] Adamia Sh.A., Chkhotua T., Kekelia M., Lordkipanidze M., Shavishvili I. & Zakariadze G., 1981. Tectonics of the Caucasus and adjoining regions: implications for the evolution of the Tethys ocean. Journal of Structural Geology, 3(4): 437–447. https://doi.org/10.1016/0191-8141(81)90043-2.
  • [2] Adamia Sh., Chabukiani A., Chkhotua T., Enukidze O., Sadradze N. & Zakariadze G., 2017. Tethyan evolution and continental collision in Georgia. In: Sorkhabi R. (ed.), Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions. Geological Society of America: 501-535. „Geological Society of America Special Papers, vol. 525”. https://doi.org/10.1130/2017.2525(16).
  • [3] Barrier E., Vrielynck B., Brouillet J.F. & Brunet M.F., 2018. Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic maps from Late Permian to Pliocene. Atlas of 20 maps (scale: 1/15 000 000). CCGM/CGMW, Paris. https://ccgm.org/en/product/atlas-darius-pdf/.
  • [4] Dercourt J., Zonenshain L.P., Ricou L.-E., Kazmin V.G., Le Pichon X., Knipper A.L., Grandjacqet C., Sbortshikov I.M., Geyssant J., Lepvrier C., Pechersky D.H., Boulin J., Sibuet J.-C., Savostin L.A., Sorokhtin O., Westphal M., Bazhenov M.L., Lauer J.P., Biju-Duval B., 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics, 123(1–4): 241–315.
  • [5] Sosson M., Kaymakci N., Stephenson R., Bergerat F. & Starostenko V., 2010. Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform: Introduction, In: Sosson M., Kaymakci N., Stephenson R.A., Bergerat F. & Starostenko V. (eds), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London: 1–10, „Geological Society, London, Special Publications, vol. 340”.
  • [6] Stampfli G.M., 2001. Palaeotectonic and palaeogeographic evolution of the western Tethys and PeriTethyan domain (IGCP Project 369). Episodes, 24(4): 222–228. https://doi.org/10.18814/epiiugs/2001/v24i4/001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7354ebc2-e60c-485a-93c3-614ab1a42f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.