PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of particle size and fractal dimensions of suspensions contained in raw sewage, treated sewage and activated sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza wielkości cząstek oraz wymiarów fraktalnych zawiesin zawartych w ściekach surowych, oczyszczonych i osadzie czynnym
Języki publikacji
EN
Abstrakty
EN
The analysis of particle size in suspensions carried out with use of the laser diffraction method enables us to obtain not only information about the size of particles, but also about their properties, shape and spatial structure, determined basing on fractal dimension. The fractal dimension permits the evaluation of the interior of aggregates, at the same time showing the degree of complexity of the matter. In literature, much attention is paid to the evaluation of the fractal dimension of flocs in activated sludge, in the aspect of control of single processes, i.e. sedimentation, dehydration, coagulation or flocculation. However, results of research concerning the size of particles and the structure of suspensions existing in raw and treated sewage are still lacking. The study presents optical fractal dimensions D3 and particle size distributions measured with use of laser granulometer in raw and treated sewage and activated sludge collected from six mechanical-biological wastewater treatment plants located in the Lower Silesian region. The obtained test results demonstrate that wastewater treatment plants that use both sequencing batch reactors and continuous flow reactors are more efficient at capturing suspension particles of a size up to 30 μm and are characterized by an increased removal of particles of a size ranging from 30 μm to 550 μm to the outflow. Additionally, in the case of samples of treated sewage and activated sludge collected at the same location, at short intervals, similar particle distributions were observed. As far as the analysis of fractal dimensions is concerned, particles contained in the raw sewage suspension were characterized by the lowest values of the fractal dimension (median equals 1.89), while the highest values occurred in particles of activated sludge (median equals 2.18). This proves that the spatial structure of suspension particles contained in raw sewage was similar to a linear structure, with a large amount of open spaces, while the structure of particles contained in the activated sludge suspension was significantly more complex in the spatial aspect.
PL
Analiza wielkości cząstek zawiesin metodą dyfrakcji laserowej pozwala uzyskać informacje nie tylko na temat wymiarów cząstek, ale także ich właściwości, kształtu oraz budowy przestrzennej, określanej na podstawie wartości wymiaru fraktalnego. Wymiar fraktalny pozwala na ocenę wnętrza agregatów, ukazując jednocześnie stopień złożoności obiektu. W literaturze dużo uwagi poświęca się ocenie wymiaru fraktalnego kłaczków osadu czynnego pod kątem kontroli procesów jednostkowych, tj.: sedymentacja, odwadnianie, koagulacja czy flokulacja, jednak wciąż brakuje wyników badań na temat wielkości cząstek i struktury zawiesin występujących w ściekach surowych i oczyszczonych. W artykule przedstawiono określone za pomocą granulometru laserowego optyczne wymiary fraktalne D3 i rozkłady wielkości cząstek w ściekach surowych, oczyszczonych i osadzie czynnym pobranych z sześciu mechaniczno-biologicznych oczyszczalni ścieków zlokalizowanych na terenie Dolnego Śląska. Uzyskane wyniki badań wskazują, iż oczyszczalnie ścieków pracujące zarówno w układzie zarówno reaktorów wsadowych jak i przepływowych powodują skuteczniejsze zatrzymywanie cząstek zawiesin o rozmiarach cząstek do 30μ m oraz podwyższone wynoszenie do odpływu cząstek w zakresie rozmiarów od 30 μm do 600 μm. Dodatkowo w przypadku próbek ścieków oczyszczonych i osadu czynnego pobieranych w tym samym miejscu i krótkich odstępach czasu zaobserwowano podobne rozkłady występowania cząstek. W przypadku analizy wymiarów fraktalnych najmniejszymi wartościami wymiaru fraktalnego (mediana równa 1,89) charakteryzowały się cząstki tworzące zawiesinę ścieków surowych, a najwyższymi cząstki osadu czynnego (mediana równa 2,2), co świadczy o tym, że budowa przestrzenna cząstek zawiesin zawartych w ściekach surowych była zbliżona do struktur liniowych z dużą ilością otwartych przestrzeni, a struktura cząstek tworzących zawiesinę osadu czynnego była znacznie bardziej rozbudowana przestrzennie.
Rocznik
Strony
67--76
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
  • Wroclaw University of Environmental and Life Science, Poland, Institute of Environmental Engineering
autor
  • Wroclaw University of Environmental and Life Science, Poland, Institute of Environmental Engineering
Bibliografia
  • [1]. Bizi, M. & Baudet, G. (2006). Contribution of static light scattering to the textural characterization of large aggregates, Journal of Colloid and Interface Science, 300, pp. 200–209.
  • [2]. Burszta-Adamiak, E., Łomotowski, J. & Kęszycka, M. (2009). Analyzing the spatial structure of suspended solids in natural water, Ochrona Środowiska, 31, 3, pp. 65–68. (in Polish)
  • [3]. Bushell, G. (2005). Forward light scattering to characterize structure of flocs composed of large particles, Chemical Engineering Journal, 111, pp. 145–149.
  • [4]. Bushell, G., Yan, Y.D., Woodfield, D., Raper, J. & Amal, R. (2002). On techniques for the measurment of the mass fractal dimension of aggregates, Advances in Colloid and Interface Science, 95, pp. 1–50.
  • [5]. Chaignon, V., Lartiges, B.S., El Samrani, A. & Mustin, C. (2002). Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: an insight into floc exchange dynamics, Water Research, 36, pp. 676–684.
  • [6]. Chakraborti, R.K., Gardner, K.H., Atkinson, J.F. & Van Benschoten, J.E. (2003). Changes in fractal dimension during aggregation, Water Research, 37, pp. 873–883.
  • [7]. Chu, C.P. & Lee, D.J. (2004). Multiscale structures of biological focs, Chemical Engineering Science, 59, pp. 1875–1883.
  • [8]. Defrance, L., Jaffrin, M.Y., Gupta, B., Paullier, P. & Geaugey, V. (2000). Contribution of various constituents of activated sludge to membrane bioreactor fouling, Bioresource Technology, 73, 2, pp. 105–112.
  • [9]. Garcia–Mesa, J.J., Delgado-Ramos, F., Muñio, M.M., Hontoria, E. & Poyatos, J.M. (2012). Comparison of activated sludge technologies by particle size analysis, Water Air and Soil Pollution, 223, pp. 4319–4331.
  • [10]. Glover, S.M., Yan, Y., Jameson, G.J. & Biggs, S. (2000). Bridging flocculation studied by light scattering and settling, Chemical Engineering Journal, 80, pp. 3–12.
  • [11]. Gonze, E., Pillot, S., Valette, E., Gonthier, Y. & Bernis, A. (2003). Ultrasonic treatment of an aerobic activated sludge in a batch reactor, Chemical Engineering and Processing, 42, pp. 965–975.
  • [12]. Gutkowska, E. & Jodłowski, A. (2014). Fractal and morphological analysis of algae cells agglomerates, Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska, Wrocław 2014. (in Polish)
  • [13]. Houghton, J.I., Burgess, J.E. & Stephenson, T. (2002). Off-line particle size analysis of digested sludge, Water Research, 36, pp. 4643–4647.
  • [14]. Jin, B., Wilén, B. & Lant, P. (2003). A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge, Chemical Engineering Journal, 95, pp. 221–234.
  • [15]. Jordan, F., Zartarian, F., Thomas, F., Block, J.C., Bottero, J.Y., Villemin, G., Urbain, V. & Manem, J. (1995). Chemical and structural (2D) linkage between bacteria within activated sludge flocs, Water Research, 29, pp. 1639–1647.
  • [16]. Jung, S.J., Amal, R. & Raper, J.A. (1996). Monitoring effects of shearing on floc structure using small-angle light scattering, Powder Technology, 88, pp. 51–54.
  • [17]. Lee, C. & Kramer, T.A. (2004). Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates, Advances in Colloid and Interface Science, 112, pp. 49–57.
  • [18]. Li, J., Li, Y., Ohandja, D.G., Yang, F., Wong, F.S. & Chua, H.C. (2008). Impact of filamentous bacteria on properties of activated sludge and membrane-fouling rate in a submerged MBR, Separation and Purification Technology, 59, 3, pp. 238–243.
  • [19]. Li, T., Zhu, Z., Wang, D., Yao, C. & Tang, H. (2006). Characterization of floc size, strength and structure under various coagulation mechanisms, Powder Technology, 168, pp. 104–110.
  • [20]. Li, X.Y. & Logan, B.E. (2001). Permeability of fractal aggregates, Water Research, 35, 14, pp. 3373–3380.
  • [21]. Li, X. & Yuan, Y. (2002). Settling velocities and permeabilities of microbial aggregates, Water Research, 36, pp. 3110–3120.
  • [22]. Logan, B.E. & Kilps, J.R. (1995). Fractal dimensions of aggregates formed in different fluid mechanical environments, Water Research, 29, pp. 443–453.
  • [23]. Łomotowski, J., Burszta-Adamiak, E., Kęszycka, M. & Jary, Z. (2008). Metody i techniki optyczne w badaniach zawiesin. Wydawnictwo PAN, Instytut Badań Systemowych, Warszawa 2008.
  • [24]. Martínez-Pedrero, F., Tirado-Miranda, M., Schmitt, A. & Callejas-Fernández, J. (2005). Aggregation of magnetic polystyrene particles: A light scattering study, Colloids and Surfaces A: Physicochemical Engineering Aspects, 270–271, pp. 317–322.
  • [25]. Meng, F., Zhang, H., Yang, F., Li, Y., Xiao, J. & Zhang, X. (2006). Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor, Journal of Membrane Science, 272, pp. 161–168.
  • [26]. Patra, A.K., Nair, S., Tyagi, A.K., Sen, D., Mazumder, S. & Ramanathan, S. (2006). Small-angle neutron scattering investigations on fractal aggregation and sintering behavior of La1−xCaxCrO3 synthesized by a combustion process, Materials Science and Engineering, 127, pp. 180–185.
  • [27]. Pye, K. & Blott, S.J. (2004). Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry, Forensic Science International, 144, pp. 19–27.
  • [28]. Qi, Y., Thapa, K.B. & Hoadley, A.F.A. (2011). Application of filtration aids for improving sludge dewatering properties – A review, Chemical Engineering Journal, 171, pp. 373–384.
  • [29]. Rahmani, N.H.G., Dabros, T. & Masliyah, J.H. (2005). Fractal structure of asphaltene aggregates, Journal of Colloid and Interface Science, 285, pp. 599–608.
  • [30]. Rice, J.A., Tombácz, E. & Malekani, K. (1999). Applications of light and X-ray scattering to characterize the fractal properties of soil organic matter, Geodermia, 88, pp. 251–264.
  • [31]. Sansalone, J.J. & Tribouillard, T. (1999). Variation in characteristics of abraded roadway particles as a function of particle size – Implications for water quality and drainage, Journal of Transportation Research Record, 1690, pp. 153–163.
  • [32]. Shidaro, D. & Zartarian, F. (1997). Characterization of activated sludge flocs structure, Water Science Technology, 36, pp. 313–320.
  • [33]. Smoczyński, L., Ratnaweera, H., Kosobucka, M. & Smoczyński, M. (2014). Image analysis of sludge aggregates, Separation and Purification Technology, 122, pp. 412–420.
  • [34]. Thill, A., Lambert, S., Moustier, S., Ginestet, P., Audic, M.J. & Bottero, J.Y. (2000). Structural interpretations of static light scattering patterns of fractal aggregates, Journal of Colloid and Interface Science, 228, pp. 386–392.
  • [35]. Waite, T.D. (1999). Measurement and implications of flocs structure in water and wastewater treatment, Colloids and Surfaces A: Physicochemical and engineering aspects, 151, pp. 27–41.
  • [36]. Wang, L.F., Wang, L.L., Li, W.W., He, D.Q., Jiang, H., Ye, X.D., Yuan, H.P., Zhu, N.W. & Yu, H.Q. (2014). Surfactant-mediated settleability and dewaterability of activated sludge, Chemical Engineering Science, 116, pp. 228–234.
  • [37]. Weth, M., Mathias, J., Emmerling, A., Kuhn, J. & Fricke, J. (2001). The structure of carbon blacks measured with (Ultra)-Small Angle X-Ray Scattering, Journal of Porous Materials, 8, pp. 319–325.
  • [38]. Wisniewski, C. & Grasmick, A. (1998). Floc size distribution in a membrane bioreactor and consequences for membrane fouling, Colloids and Surfaces, 138, pp. 403–411.
  • [39]. Wu, R.M., Lee, D.J., Waite, T.D. & Guan, J. (2002). Multilevel structure of sludge flocs, Journal of Colloid and Interface Science, 252, pp. 383–392.
  • [40]. Vainshtein, P., Shapiro, M. & Gutfinger, C. (2004). Mobility of permeable aggregates: effects of shape and porosity, Aerosol Science, 35, pp. 383–404.
  • [41]. Vahedi, A. & Gorczyca, B. (2012). Predicting the settling velocity of flocs formed in water treatment using multiple fractal dimensions, Water Research, 46, 13, pp. 4188–4194.
  • [42]. Zheng, H., Zhu, G., Jiang, S., Tshukudu, T., Xiang, X., Zhang, P. & He, Q. (2011). Investigations of coagulation – flocculation process by performance optimization, model prediction and fractal structure of flocs, Desalination, 269, pp. 148–156.
  • [43]. Zhao, P., Ge, S., Chen, Z. & Li, X. (2013). Study on pore characteristics of flocs and sludge dewaterability based on fractal methods (pore characteristics of flocs and sludge dewatering), Applied Thermal Engineering, 58, pp. 217–223.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7351eb93-9bc3-402e-9fab-c5f451988d54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.