PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Electrospinning for Vascular Prothesis Design – Preliminary Results

Identyfikatory
Warianty tytułu
PL
Zastosowanie elektroprzędzenia do wytwarzania protez naczyń krwionośnych – badania wstępne
Języki publikacji
EN
Abstrakty
EN
One of the novel technologies for vascular prosthesis design is melt electrospinning. The solvent–free approach allows to model electrospinning without the complications associated with solvent evaporation or the risk of a potential adverse, toxic reaction, both local and systemic. However, many tissue-engineers wish to combine various cells and electrospun material for clinical use. Preliminary research of flat fibrous structures made by melt electrospinning and the processing influence of parameters on the resulting fibre properties was performed. Surface analysis of planar structures by Scanning Electron Microscopy (SEM) and determination of the fiber diameter using SEM microphotographs and Lucia G software were realised.
PL
Elektroprzędzenie ze stopu stanowi dobrą alternatywę do wytwarzania struktur włókienniczych o potencjalnym zastosowaniu w chirurgii naczyniowej i kardiochirurgii, głównie ze względu na brak konieczności stosowania rozpuszczalników oraz możliwości efektywnego projektowania biomimetycznych rusztowań naczyniowych charakteryzujących się optymalną strukturą z włókien o stosunkowo małej średnicy i niskiej masie powierzchniowej. Celem badań było wyznaczanie wpływu parametrów technologicznych elektroprzędzenia ze stopu na właściwości otrzymanych płaskich struktur włóknistych będących modelami wyjściowymi do projektowania struktur trójwymiarowych o potencjalnym zastosowaniu jako protezy naczyniowe. W ramach przeprowadzonych wstępnych badań wytworzono struktury płaskie z polipropylenu i z polilaktydu. Przeprowadzono analizę powierzchni otrzymanych struktur metodą elektronowej mikroskopii skaningowej (SEM) oraz wyznaczano średnice włókien utworzonych struktur stosując oprogramowanie Lucia.
Rocznik
Strony
46—52
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Poland, Łódź, Technical University of Lodz, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciencs and Textile Metrology
  • Poland, Łódź, Technical University of Lodz, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciencs and Textile Metrology
  • Poland, Łódź, Technical University of Lodz, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciencs and Textile Metrology
  • Poland, Łódź, Technical University of Lodz, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciencs and Textile Metrology
Bibliografia
  • 1. Lloyd, J. et al., Heart Disease and Stroke Statistics 2010 Update: A Report from the American Heart Association, Journal of the American Heart Association, ISSN 1524 – 4539, 2010-[92-98,availableat:<http://circ.anajournals.org/cgi/reprint/CIRCULATIONAHA.109.192667>
  • 2. Sell, SA. McClure, MJ. Garg, K. Wolfe PS. Bowlin GL., Electrospinning of Collagen/Biopolymers for Regenerative Medicine and Cardiovascular Tissue Engineering, Advanced Drug Delivery Reviews, 2009, 61(12), 1007-19.
  • 3. Xu, J. et al.: Deaths: Preliminary Data for 2007. National Vital Statistics Reports. Hyattsville, Md: National Center for Health Statistics, 2009, 58(1), 1-51.
  • 4. National Center for Health Statistics: Health Data Interactive (online). 2009-[accessed 2009-06-10], available at: <http://205.207.175.93/hdi/ReportFolders/ReportFolders. aspx?IF_ActivePath_P,21>
  • 5. Wilson, CT. Fisher, ES. Welch, HG.Siewers, AE. Lucas, FL.: U.S. Trends in CABG Hospital Volume: The Effect of Adding Cardiac Surgery Programs, Health Aff .Millwood. 2007, 26, 162–8
  • 6. Wilson, SE. et al. Vascular Burgery Principles At Practise. New Yourk: McGraw-Hill Book Company, 1987, 457-64.
  • 7. Hoerstrup, SP. Zünd, G. Sodian, R. Schnell,AM. Grünenfelder, J. Turina, MI.:Tissue Engineering of Small Caliber Vascular Grafts, European Journal of Cardiothoracic Surgery, 2001, 20, 164-69.
  • 8. Sarkar, S. Salacinski, HJ. Hamilton, G. Seifalian, AM.: The Mechanical Properties of Infrainguinalvascular Bypass Grafts: Their Role in Influencing Patency, Eur. J. Vasc. Endovasc. Surg., 2006, 31, 627-36.
  • 9. Ratcliffe, A.: Tissue Engineering of Vascular Grafts, Matrix Biology, 2000, 19,353-57.
  • 10. Vara, DS. Salacinski, HJ. Kannan, RY. Bordenave, L. Hamilton, G. Seifalian, AM.: Cardiovascular Tissue Engineering: State of The Art, Pathologie Biologie, 2005, 53, 599-612.
  • 11. Pietruch. K, Góra, L. Antczak, J. Raczko- Wojczyszyn, A.:Sposób Wytwarzania Poliestrowych Protez Naczyniowych Modyfikowanych Kolagenem, Patent PL No. 147764, 1989.
  • 12. Huang, ZM. Zhang, YZ. Kotaki, M. Ramakrishn, S. A Review on Polymer Nanofibres by Electrospinning and Their Applications in Nanocomposites, Composites Science and Technology, 2003, 63(15), 2223-53.
  • 13. Jie Li, William C. Regli, Wei Sun.: An Approach to Integrating Shape and Biomedical Attributes in Vascular Models, 2007, 39, 589-609.
  • 14. Hiraoka Y, Kimura Y, Ueda H, Tabata Y. Fabrication and Biocompatibility of Collagen Sponge Reinforced with Poly(glycolic acid) Fibre, Tissue Eng, 2003, 9, 1101-12.
  • 15. Zhou, H. Green TB. Joo, YL.: The Thermal Effects on Electrospinning of Polylactic Acid Melts, Polymer, 2006, 7497- 505.
  • 16. Hadjizadeh, A. Ajji, A. Bureau M.N.: Preparation and characterization of NaOH treated micro-fibrous polyethylene terephthalate nonwovens for biomedical application, Journal of Mechanical Behavior of Biomedical Materials. 2010, 3, 574-83.
  • 17. Gulbins, H. Dauner, M. Petzold, R. Goldemund A. Anderson, I. Doser, M. Meiser, B. Reichart, B.: Development of an artificial vessel lined with human vascular cells, The Journal of Thoracic and Cardiovascular Surgery. 2004, 128, 372-7.
  • 18. Hutmacher, D.W. Dalton P.D.: Melt electrospinning, chemistry an Asian Journal, 2011,6, 44-56.
  • 19. Dalton, PD. Grafahrend, D. Klinkhammer, K. Klee, D. Möller, M.: Electrospinning of Polymer Melts: Phenomenological Observations, Polymer, 2007, 48, 6823-33.
  • 20. Lyons, J. Li, Ch. Ko, F.: Melt-electrospinning Part I: Processing Parameters and Geometric Properties, Polymer, 2004, 45, 7597-603.
  • 21. Malakhov, SN. Khomenko, AY. Belousov, SI. Prazdnichnyi, AM. Chvalun, SN. Shepelev, AD. Budyka, AK.: Method of Manufacturing Nonwoves by Electrospinning from Polymer Melts, Fibre Chemistry, 2009, 41, 355-59.
  • 22. Larrondo, L. Manley, SJ.: Electrostatic Fibre Spinning from Polymer Melts: Experimental Observations on Fibre Formation and Properties. J. Polymer Sci.: Polymer Phys. Edn., 1981, 19, 909-920.
  • 23. Larrondo, L. Manley, SJ. Electrostatic Fibre Spinning from Polymer Melts: Axamination of The Flow Field in An Electrically Driven Jet, J. Polymer Sci.: Polymer Phys. Edn., 1981, 9, 921-32.
  • 24. Kim, HW. Song, JH. Kim, HE.: Nanifibre Generation of Gelatin-hydroxyapatite Biomimetics for Guided Tissue Regeneration, Adv. Funct. Mater, 2005, 15, 1988-94.
  • 25. Dalton, PD. Joergensen, NT. Groll, J. Moeller, M.: Patterned Melt Electrospun Substrates for Tissue Engineering, Biomedical Materials, 2008, 3, 1-11.
  • 26. Xu, CY. Inai, R. Kotaki, M. Ramakrishna, S.: Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel Engineering. Biomaterials, 2004, 25(5), 877-86.
  • 27. Dalton, PD. Klinkhammer, K. Salber, J. Klee, D. Möller, M.: Direct in Vitro Electrospinning with Polymer Melts, Biomacromolecules, 2006, 7, 686-690.
  • 28. Ogata, N. Shimada, N. Yamaguchi, Sh. Nakane, K. Ogihara, T.: Melt-Electrospinning of Poly(ethylene terephthalate) and Polyalirate. Journal of Applied Polymer Science, 2007, 105, 1127-32.
  • 29. Ogata, N. Yamaguchi, Sh. Shimada, N. Lu, G. Iwata, T. Nakane, K. Ogihara, T.: Poly(lactide) Nanofibers Produced by A Melt-Electrospinning System with A Laser Melting Device, Journal of Applied Polymer Science, 2007, 104, 1640-45.
  • 30. Ogata, N. Lu, G. Iwata, T. Yamaguchi, S. Nakane, K. Ogihara, T.: Effects of Ethylene Content of Poly(Ethylene-co-vinyl alcohol)on Diameter of Fibres Produced by Melt-Electrospinning, J ApplPolym Sci., 2007, 104, 1368-75.
  • 31. Zhang, Ch. Yuan, X. Wu, L. Han, Y. Sheng, J.: Study on Morphology of Electrospun Poly(vinyl alcohol) Mats, 2005, 423-32.
  • 32. Boland, ED. Wnek, GE. Simpson, DG. Pawlowski, KJ. Bowlin, KL. Tailoring Tissue Engineering Scaffolds Using Electrostatic Processing Technique: A Study of Poly(glycolic acid) Electrospinning, J. Macromol. Sci. – Pure Appl. Chem., 2001, 12, 1231-43.
  • 33. Taylor, GL.: Electrically Driven Jets. Proc. Roy. Soc. London A, l969, 313, 453.
  • 34. Deitzel, J. Beck Tan, NC. Rehrmann, KJ. Tcvault, D. Reneker, DH. Sendijarevic, I. McHugh, A.: Generation of Polymer Nanofibres through Electrospinning, 1999, Army Research Labs.
  • 35. Lyons, J. Ko, F.: Melt Electrospinning of Polymers: A Review, Polymer News, 2005, 30, 170-78.
  • 36. Dacko, P. Kowalczuk, M. Janeczek, H. Sobota, M.: Physical Properties of the Biodegradable Polymer Compositions Containing Natural Polyesters and their Synthetic Analogues, Macromol. Symp. 2006, 239, 209-16.
  • 37. Kim, J.S. Jang, D.H. Park. W. H. Min B.M.: Fabrication and Characterization of 3 Dimensional PLGA NAnofibre/Microfibre com[posite scaffolds, 2010, 51, 1320-27.
  • 38. Stitzel, JD. Pawlowski, KJ. Wnek, GE. Simpson, DG. Bowlin, GL.: Arterial Smooth Muscle Cell Proliferation on A Novel Biomimicking, Biodegradable Vascular Graft Scaffold, J. Biomater. Appl. 2001, 16, 22-33.
  • 39. Struszczyk M.H., Vascular Prostheses – Harmonized Standards, MedTex 2005, Proceedings of Vth International Scientific Conference, ISBN 83-911012-3-1, 32.
  • 40. Dou, Sh. Chang, K.: Biaxially Oriented Polylactic Acid Film With Improved Moisture Barrier, Patent WO 2010/151872.
  • 41. Deitzel, J. Kleinmeyer, J. Harris, D. Beck Tan, NC.: The Effect of Processing Variables on The Morphology of ElectrospunNanofibres and Textiles. Polymer. 2001. vol. 42, pp. 261-272.
  • 42. Deng, R. Liu, Y. Ding, Y. Xie, P. Luo, L. Yang, W.: Melt Electrospinning of Low- Density Polyethylene Having a Low-Melt Flow Index, Journal of Applied Polymer Science. 2009, 114, 166-175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-734f6d6a-1da1-4f82-9a35-b7ed1c4afe11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.