PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Plastic Flow Behaviour of Metals in the Hot Deformation Process Using Artificial Intelligence Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hot deformation of metals is a widely used process to produce end products with the desired geometry and required mechanical properties. To properly design the hot forming process, it is necessary to examine how the tested material behaves during hot deformation. Model studies carried out to characterize the behaviour of materials in the hot deformation process can be roughly divided into physical and mathematical simulation techniques. The methodology proposed in this study highlights the possibility of creating rheological models for selected materials using methods of artificial intelligence, such as neuro-fuzzy systems. The main goal of the study is to examine the selected method of artificial intelligence to know how far it is possible to use this method in the development of a predictive model describing the flow of metals in the process of hot deformation. The test material was Inconel 718 alloy, which belongs to the family of austenitic nickel-based superalloys characterized by exceptionally high mechanical properties, physicochemical properties and creep resistance. This alloy is hardly deformable and requires proper understanding of the constitutive behaviour of the material under process conditions to directly enable the optimization of deformability and, indirectly, the development of effective shaping technologies that can guarantee obtaining products with the required microstructure and desired final mechanical properties. To be able to predict the behaviour of the material under non-experimentally tested conditions, a rheological model was developed using the selected method of artificial intelligence, i.e. the Adaptive Neuro-Fuzzy Inference System (ANFIS). The source data used in these studies comes from a material experiment involving compression of the tested alloy on a Gleeble 3800 thermo-mechanical simulator at temperatures of 900, 1000, 1050, 1100, 1150oC with the strain rates of 0.01 - 100 s-1 to a constant true strain value of 0.9. To assess the ability of the developed model to describe the behaviour of the examined alloy during hot deformation, the values of yield stress determined by the developed model (ANFIS) were compared with the results obtained experimentally. The obtained results may also support the numerical modelling of stress-strain curves.
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Cracow, Poland
Bibliografia
  • [1] Grzegorzewski, P., A. Kochański, A. (2019). Data and modeling in industrial manufacturing. In: Grzegorzewski, P., Kochanski, A., Kacprzyk, J. (eds) Soft Modeling in Industrial Manufacturing. Studies in Systems, Decision and Control, 183. Springer, Cham. DOI:10.1007/978-3-030-03201-2_1.
  • [2] Bobbili, R., Venkata, R. & Madhu, V. (2017). A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy. Journal of Alloys and Compounds. 696, 295-303. https://doi.org/10.1016/j.jallcom.2016.11.208.
  • [3] Gronostajski, Z. (2000). The constitutive equations for FEM analysis. Journal of Materials Processing Technology. 106(1-3), 40-44. DOI:10.1016/S0924-0136(00)00635-X.
  • [4] Luo, J., Li, M., Li, X. & Shi, Y. (2010). Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mechanics of Materials. 42(2), 157-165. DOI:10.1016/j.mechmat.2009.10.004.
  • [5] Voyiadjis, G.Z. & Abed, F.H. (2005). Microstructural based models for bcc and FCC metals with temperature and strain rate dependency. Mechanics of Materials. 37(2-3), 355-378. DOI:10.1016/j.mechmat.2004.02.003.
  • [6] Lin, Y. & Xiao-Min, C. (2011). A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials and Design. 32(4), 1733-1759. DOI:10.1016/j.matdes.2010.11.048.
  • [7] Johnson, G. & Cook, W. (1985). Fracture characteristics of three metals subjected to various strains, strain rates. temperatures and pressures. Engineering Fracture Mechanics. 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9.
  • [8] Zhang, H., Wen, W. & Cui, H. (2009). Behaviors of IC10 alloy over a wide range of strain rates and temperatures. experiments and modeling. Materials Science and Engineering. A. 504(1-2), 99-103. DOI:10.1016/j.msea. 2008.10.056.
  • [9] Lin, Y., Chen, X. & Liu, G. (2010). A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel. Materials Science and Engineering A. 527(26), 6980-6986. DOI:10.1016/j.msea.2010.07.061.
  • [10] Molinaria, A. & Ravichandran, G. (2005). Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mechanics of Materials. 37(7), 737-752. DOI: 10.1016/j.mechmat.2004.07.005.
  • [11] Zerilli, P. & Armstrong, R. (1987). Dislocation-mechanics-based constitutive relations for material dynamics calculations. Journal of Applied Physics. 61, 1816-1825. https://doi.org/10.1063/1.338024.
  • [12] Samantaray, D., Mandal, S., Borah, U. & Bhaduri, A. (2009). A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Materials Science and Engineering A. 526(1-2), 1-6. DOI:10.1016/j.msea.2009.08.009.
  • [13] Lin, Y., Chen, M. & Zhang, J. (2008). Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mechanics Research Communications. 35(3), 142-50. DOI:10.1016/j.mechrescom.2007.10.002.
  • [14] Goetz, R. & Seetharaman, V. (1998). Modeling dynamic recrystallization using cellular automaton. Scripta Materialia. 38(3), 405-13. DOI: 10.1016/s1359-6462(97)00500-9.
  • [15] Hawryluk, M. & Mrzygłód, B. (2018). A system of analysis and prediction of the loss of forging tool material applying artificial neural networks. Journal of Mining and Metallurgy. Section: B, Metallurgy. 54(3), 323-337. https://doi.org/10.2298/JMMB180417023H.
  • [16] Mrzygłód, B., Gumienny, G., Wilk-Kołodziejczyk, D. & Regulski, K. (2019). Application of selected artificial intelligence methods in a system predicting the microstructure of compacted graphite iron. Journal of Materials Engineering and Performance. 28(7), 3894-3904. DOI: 10.1007/s11665-019-03932-4.
  • [17] Hawryluk, M. & Mrzygłód, B. (2017). A durability analysis of forging tools for different operating conditions with application of a decision support system based on artificial neural networks (ANN). Maintenance and Reliability. 19(3), 338-348. DOI:10.17531/ein.2017.3.4.
  • [18] Han, Y., Qiao, G., Sun, J. & Zou, D. (2013). A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models. Science, Computational Materials. 67, 93-103. DOI:10.1016/j.commatsci.2012.07.028
  • [19] Yonghua, D., Lishi, M., Huarong, Q., Runyue, L. & Ping, J. (2017). Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5B alloy. Materials Characterization. 129, 353-366.
  • [20] Reddy, N., You, H.L., Chan, H.P. & Chong, S.L. (2008). Prediction of flow stress in Ti–6Al–4V alloy with an equiaxed microstructure by artificial neural networks. Materials Science and Engineering A. 492(1-2), 276-282. DOI:10.1016/j.msea.2008.03.030.
  • [21] Jingwei, J., Hua, D., Wenjuan, Z., Mingli, H., Dongbin, W. & Zhengyi, J. (2014). Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network. Computational Materials Science. 92, 47-56. DOI:10.1016/j.commatsci.2014.05.040
  • [22] Lakshmi, A.A. Rao, C.S., Srikanth, M., Faisal, K., Fayaz, K. & Puspalatha, D. (2017). Prediction of mechanical properties of ASS 304 in superplastic region using artificial neural networks. Materials Today: Proceedings. 5(2), 3704-3712.
  • [23] Vafaeenezhad, H., Seyedein, S. & Aboutalebi, M. (2017). Application of constitutive description and integrated ANFIS - ICA analysis to predict hot deformation behavior of Sn-5Sb lead-free. Journal of Alloys and Compounds. 697, 287-299. DOI: 10.1016/j.jallcom.2016.12.148.
  • [24] Jia, W., Zeng, W., Han, Y., Liu, J., Zhou, Y. & Wang, Q. (2011). Prediction of flow stress in isothermal compression of Ti60 alloy using an adaptive network-based fuzzy inference system. Materials & Design. 32(10), 4676-4683. DOI:10.1016/j.matdes.2011.06.053
  • [25] Chunlei, G. & Mengjun, W. (2012). An application of ANFIS to predict the hot flow behavior of 6063 aluminum alloy. Journal of Materials Engineering and Performance. 21, 1160-1166. DOI: 10.1007/s11665-011-0033-y
  • [26] Han, Y., Zeng, W. & Zhao, Y. (2011). An ANFIS model for the prediction of flow stress of Ti600 alloy during hot deformation process. Computational Materials Science. 50(7), 2273-2279. DOI:10.1016/j.commatsci.2011.03.004.
  • [27] Chen, D.-D., Lin, Y.C., Zhou, Y. & Chen, M.-S. (2017). Dislocation substructures evolution and an adaptive-network-based fuzzy inference system model for constitutive behavior of a Ni-based superalloy during hot deformation. Journal of Alloys and Compounds. 708, 938-946. DOI:10.1016/j.jallcom.2017.03.029.
  • [28] Jonas, J., Sellars, C. & Mc Tegart, W. (1969). Strength and structure under hot-working conditions. International Materials Reviews. 14, 1-24. https://doi.org/10.1179/mtlr.1969.14.11.
  • [29] Lin, Y.C., Ming-Song, C. & Zhong, J. (2008). Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Computational Materials Science. 42(3), 470-477. https://doi.org/10.1016/j.commatsci.2007.08.011.
  • [30] Zhou, Y., Xiao-Min, C. & Qin, S. (2019). A strain-compensated constitutive model for describing the hot compressive deformation behaviors of an aged Inconel 718 superalloy. High Temperature Materials and Processes. 38, 436-443. DOI:10.1515/htmp-2018-0108.
  • [31] Mahalle, G., Kotkunde, N., Gupt, A.K., Sujit, R., Kumar Sing, S. & Lin, Y. (2019). Microstructure characteristics and comparative analysis of constitutive models for flow stress prediction of Inconel 718 alloy. Journal of Materials Engineering and Performance. 28(6), 3320-3331. DOI:10.1007/s11665-019-04116-w.
  • [32] Sabokpa, O., Zarei-Hanzaki, A., Abedi H. & Haghdadi, N. (2012). Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy. Materials & Design. 39, 390-396. DOI:10.1016/j.matdes.2012.03.002.
  • [33] Lin, Y.C., Hui, Y., He, D.-G. & Chen, J. (2019). A physically-based model considering dislocation-solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures. Materials & Design. 183, 108122. DOI:10.1016/j.matdes.2019.108122.
  • [34] Lin, Y.C., Li, J., Chen, M.-S., Liu, Y.-X. & Liang, Y.-J. (2018). A deep belief network to predict the hot deformation behavior of a Ni-based superalloy. Neural Comput & Applic. 29, 1015-1023. https://doi.org/10.1007/s00521-016-2635-7.
  • [35] Manohar, M., Selvaraj, T., Sivakumar, D., Jeyapaul, R. & Jomy, J. (2014). Application of experimental design and analysis of mathematical models for turning Inconel 718 using coated carbide tools. Society for Experimental Mechanics. 38, 61-71. https://doi.org/10.1111/j.1747-1567.2012.00833.x.
  • [36] Takagi T. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics. 15(1), 116-132.
  • [37] Jang, J. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions Systems Man Cybernetics. 3, 665-685. DOI:10.1109/21.256541.
  • [38] Lin, Y., Li, K.-K., Li, H.-B., Chen, J., Chen, X.-M. & Wen, D.-X. (2015). New constitutive model for high-temperature deformation behaviour of Inconel 718 superalloy. Materials & Design. 74, 108-118. http://dx.doi.org/10.1016/ j.matdes.2015.03.001.
  • [39] Tan, Y., Ma, Y. & Zhao, F. (2018). Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy. Journal of Alloys and Compounds. 741, 85-96. https://doi.org/10.3390/met8100846.
  • [40] Sui, F., Xu, L., Chen, L. & Liu, X. (2011). Processing map for hot working of Inconel 718 alloy. Journal of Materials Processing Technology. 211(3), 433-440. DOI:10.1016/j.jmatprotec.2010.10.015.
  • [41] He, D.-G. Lin, Y., Jiang, X.-Y., Yin, L.-X., Wang, L.-H. & Wu, Q. (2018). Dissolution mechanisms and kinetics of δ phase in an aged Ni-based superalloy in hot deformation process. Materials & Design. 156, 262-271. DOI:10.1016/j.matdes.2018.06.058.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-734d40b6-0165-43c6-9e0f-01f4ede74e20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.