PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrothermal Model of Ferromagnetic Cores

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Elektrotermiczny model rdzenia ferromagnetycznego
Języki publikacji
EN
Abstrakty
EN
This paper presents an electrothermal model of ferromagnetic cores dedicated for SPICE software. The form of this model, dedicated to be used in power electronics applications, is presented and the procedure of estimating magnetic, geometric and thermal parameters of the presented model is proposed. The correctness of the proposed model is verified by comparing the calculated and measured characteristics of the selected ferromagnetic cores operating at different values of flux density, frequency, ambient temperature and cooling conditions. The satisfied agreement between the results of calculations and measurements is obtained.
PL
W pracy zaproponowano elektrotermiczny model rdzeni ferromagnetycznych dla programu SPICE, dedykowany do analizy układów energoelektronicznych. Przedstawiono postać modelu oraz sposób wyznaczania jego parametrów magnetycznych, geometrycznych oraz cieplnych. Poprawność prezentowanego modelu została zweryfikowana przez porównanie obliczonych i zmierzonych charakterystyk wybranych rdzeni wykonanych z różnych materiałów i pracujących przy różnych wartościach indukcji pola magnetycznego, częstotliwości i temperatury otoczenia oraz przy różnych warunkach chłodzenia. We wszystkich przypadkach uzyskano dobrą zgodność między wynikami obliczeń i pomiarów.
Rocznik
Strony
161--165
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Akademia Morska w Gdyni, Katedra Elektroniki Morskiej, ul. Morska 83, 81-225 Gdynia
autor
  • Akademia Morska w Gdyni, Katedra Elektroniki Morskiej, ul. Morska 83, 81-225 Gdynia
Bibliografia
  • [1] Ericson R., Maksimovic D.: Fundamentals of Power Electronics, Norwell, Kluwer Academic Publisher, 2001.
  • [2] Górecki K., Stepowicz W.J.: Influence of selfheating phenomenon in the coil on the characteristics of the buck converter. Przegląd Elektrotechniczny, Vol. 85, No. 11, 2009, pp. 145-148.
  • [3] Górecki K., Detka K.: Electrothermal model of choking-coils for the analysis of dc-dc converters. Materials Science & Engineering B, Vol. 177, No. 15, 2012, pp. 1248-1253.
  • [4] Górecki K., Detka K.: The parameter estimation of the electrothermal model of inductor. Informacije MIDEM, No. 1, 2015, in press
  • [5] Van den Bossche A., Valchev V.C.: Inductors and transformers for Power Electronics. CRC Press, Taylor & Francis Group Boca Raton, 2005.
  • [6] Górecki K., Zarębski J.: Electrothermal analysis of the selfexcited push-pull dc-dc converter. Microelectronics Reliability, Vol. 49, No. 4, 2009, pp. 424-430.
  • [7] Fuzi J., Helerea E., Ivanyi A.: Experimental Construction of Preisach Models for Ferromagnetic Cores. International Conference ZM Communications GmbH (PCIM 1998), Power Conversion, Nurnberg, 1998, pp. 661-666.
  • [8] Motoasca S., Nicolaide A., Helerea E., Scutaru G.: Analytical method for hysteresis modelling of soft magnetic material, 12 th International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2010.
  • [9] Jiles D.C., Atherton D.L.: Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, Vol. 61, 1986, pp. 48-60.
  • [10] Coit R.H.: Designing with magnetic Cores at High temperatures. PCIM 2001 Europe Official Proc. of 43rd international Power Electronics Conference Nurnberg, 2001, pp. 607-612.
  • [11] Using Magnetic Cores at High Temperatures. Technical Bulletin, Magnetics, No. CG-06, 2001.
  • [12] Tenant J., Rousseau J., Zegadi L.: Hysteresis modeling taking into account the temperature. Proceedings of European Power Electronics Conference, Vol. 1, 1995, pp. 1.001-1.006.
  • [13] Ladjimi A., Mekideche M. R.: Modeling of thermal effects on magnetic hysteresis using the Jiles-Atherton model. Przegląd Elektrotechniczny, R. 88, nr 4a, 2012, pp. 253-256.
  • [14] Górecki K., Rogalska M., Zarębski J., Detka K.: Modelling characteristics of ferromagnetic cores with the influence of temperature. Journal of Physics: Conference Series, Vol. 494, 2014, 012016
  • [15] Raghunathan A., Melikhov Y., Snyder J.E., Jiles D.C.: Modeling the temperature dependence of hysteresis based on Jiles-Atherton theory. IEEE Transactions on Magnetics, Vol. 45, No. 10, 2009, pp. 3954-3957.
  • [16] Maksimovic D., Stankovic A.M., Thottuvelil V.J., Verghese G.C.: Modeling and simulation of power electronic converters, Proceedings of the IEEE, Vol. 89, No. 6, 2001, pp. 898-912.
  • [17] Basso C.: Switch-Mode Power Supply SPICE Cookbook, McGraw-Hill, New York 2001.
  • [18] Zirka S. E., Moroz Y. I., Harrison R. G., Chwastek K.: On physicl aspects of the Jiles-Atherton hysteresis models. Journal of Applied Physics, Vol. 112, 2012, pp. 043916-1 – 043916-7.
  • [19] Chwastek K.: Problems in descriptions of hysteresis. Przegląd Elektrotechniczny, Vol. 86, No. 4, 2010, pp. 24-27.
  • [20] Wilamowski B., Jager R.C.: Computerized circuit Analysis Using SPICE Programs, McGraw-Hill, New York 1997.
  • [21] Prigozy S.: PSPICE computer modeling of hysteresis effects. IEEE Tranasactions on Education, Vol. 36, 1993, pp. 2-5.
  • [22] Wilson P.R., Ross J.N., Brown A.D.: Simulation of magnetic component models in electric circuits including dynamic thermal effects. IEEE Trans. on Power Electronics, Vol. 17, No. 1, 2002, pp. 55-65.
  • [23] Górecki K., Rogalska M., Zarębski J.: Parameter estimation of the electrothermal model of the ferromagnetic core. Microelectronics Reliability, Vol. 54, No. 5, 2014, pp. 978-984.
  • [24] Maxim A., Andreu D., Boucher J.: New SPICE behavioural macromodelling method of magnetic components including the self-heating process. Proceedings of IEEE Annual Power Electronics Specialist Conference PESC, Vol. 2, 1999, pp. 735-740.
  • [25] Maxim A., Andreu D., Boucher J.: Novel behavioral method of SPICE macromodeling of magnetic components including the temperature and frequency dependencies. Proceedings of IEEE Application Power Electronics Conference and Exposition APEC’98, Vol.1, 1998, pp. 393-399.
  • [26] Szekely V.: A New Evaluation Method of Thermal Transient Measurement Results. Microelectronic Journal, Vol. 28, No. 3, 1997, pp. 277-292.
  • [27] P.E. Bagnoli, C. Casarosa, M. Ciampi, E. Dallago: Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. IEEE Trans. on Power Electronics, I. Fundamentals and Theory, Vol. 13, No. 6, 1998; pp. 1208-19.
  • [28] Zarębski J., Górecki K.: The electrothermal large-signal model of power MOS transistors for SPICE. IEEE Transaction on Power Electronics, Vol. 25 , No. 5-6, 2010, pp. 1265 – 1274.
  • [29] Górecki K.: The electrothermal macromodel of switching voltage regulators from L4970 family. International Journal of Numerical Modelling Electronic Networks, Devices and Fields, Vol. 21, No. 6, 2008, pp. 455-473.
  • [30] Zarębski J., Górecki K.: Modelling CoolMOS Transistors in SPICE. IEE Proceedings on Cicuits, Devices and Systems, Vol. 153, No. 1, 2006, pp. 46-52.
  • [31] Wilson P. R., Ross J.N., Brown A.D.: Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm. IEEE Transactions on Magnetics, Vol. 37, No. 2, 2001, pp. 989-993.
  • [32] Wilson P.R., Ross J.N.: Definition and application of magnetic material metrics in modeling and optimization. IEEE Transactions on Magnetics, Vol. 37, No. 5, 2001, pp. 3774-3780.
  • [33] Schmidt N., Guldner H.: Simple method to determine dynamic hysteresis loops of soft magnetic materials. IEEE Transactions on Magnetics, Vol. 32, 1996, pp. 489-496.
  • [34] Lederer D., Igarashi H., Kost A., Honna T.: On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modeling of measured characteristics. IEEE Transactions on Magnetics, Vol. 35, 1999, pp. 1211-1214.
  • [35] Zarębski J., Górecki K.: Parameters Estimation of the D.C. Electrothermal Model of the Bipolar Transistor. International Journal of Numerical Modelling Electronic Networks, Devices and Fields. Vol. 15, No. 2, 2002, pp. 181-194.
  • [36] Górecki K., Rogalska M.: The Compact Thermal Model of the Pulse Transformer. Microelectronics Journal, Vol. 45, No. 12, 2014, pp. 1795-1799.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-734ce33f-6664-4d1c-9d08-e284bcaa1d39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.