PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of wavy sea surface oil-derivative contamination with forward specular high-frequency scattering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A spectrum of low-frequency (20‒30 Hz) amplitude fluctuations of the ultrasonic (10 MHz) signal specularly scattered from water surfaces covered with monomolecular and thicker crude oil origin films of well-defined, oceanographically relevant viscoelastic properties was examined in laboratory and at-sea conditions. The relationship between the Surface water wave (30 Hz) damping coefficient and the oil layer thickness was established, and compared to the one predicted by the classical Stokes theory. The depression of the spectral energy density of wind-driven waves by surface films was inferred from the ratio of acoustic signal fluctuations spectra with/without films, and compared to that resulting from the Marangoni damping theory applicable to monolayers of particular surface viscoelasticity. The agreement between the theory and experimental data was satisfactory. As shown in at-sea experiments performed with a free-floating, buoy-like acoustic system, and an artificial oil slick spread over the Baltic Sea surface, the film’s rheological Surface properties can be recovered from acoustic surface probing, as well as oil spill edge detection. Simultaneous statistical analyses of the scattered signal amplitude distribution parameters turned out to be unequivocally related to the oil substance fraction weight, oil layer thickness, and the form of oil contamination.
Rocznik
Tom
Strony
173--179
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Institute of Experimental Physics, University of Gdańsk , Wita Stwosza 57, 80-308 Gdańsk, Poland
  • Institute of Experimental Physics, University of Gdańsk , Wita Stwosza 57, 80-308 Gdańsk, Poland
  • Institute of Experimental Physics, University of Gdańsk , Wita Stwosza 57, 80-308 Gdańsk, Poland
  • Institute of Experimental Physics, University of Gdańsk , Wita Stwosza 57, 80-308 Gdańsk, Poland
autor
  • Faculty of Physics, Institute of Acoustics, A. Mickiewicz University, Umultowska 85, 61-612 Poznań, Poland
  • INFO-EKO Design-Consulting Office, Łódzka 50A/3, 80-180 Gdańsk, Poland
Bibliografia
  • 1. Adamson A.W. (1982): Physical chemistry of surfaces, Wiley, New York.
  • 2. Boniewicz-Szmyt K., Pogorzelski S. J. (2018): Evolution of natural sea surface films: A new quantification formalism based on multidimensional space vector. Environ. Sci. Pollut. Res., 25, 4826-4836.
  • 3. Boniewicz-Szmyt K., Pogorzelski S. J. (2008): Crude oil derivatives on sea water: Signatures of spreading dynamics. J. Mar. Syst., 74, S41-S51.
  • 4. Boniewicz-Szmyt K., Pogorzelski S. J., Mazurek A. (2007): Hydrocarbons on sea water: steady-state spreading signatures determined by an optical method. Oceanologia, 49(3), 413-437.
  • 5. Cini R., Lombardini P. P. (1978): Damping effect of monolayers on surface wave motion in a liquid. J. Coll. Int. Sci., 65, 387-389.
  • 6. Cini R., Lombardini P. P., Fiscella B., Trivero P. (1985): Ripple damping on water surface covered by spreading film. Nuovo Cimento, 86, 491-500.
  • 7. Ermakov S. A., Plinovsky E. A. (1984): Variation of the spectrum of wind ripple on coastal waters under the action of internal waves. Dyn. Atmos. Oceans, 8(1), 95-100.
  • 8. Ermakov S. A., Zuykova A. M., Panchenko A. R., Salashin S. G., Talipova T. G., Titov V. I. (1986): Surface film effect on short wind waves. Dyn. Atmos. Oceans, 10, 31-50.
  • 9. Ermakov S. A., Zuykova A. M., Salashin S. G. (1987): Transformation of spectra of short wind waves in spilled layers. Izv. AN USSR, Phisica Atmosfery i Okeana, 23(7), 707-15 (in Russian).
  • 10. Harkins W. D. (1952): The physical chemistry of Surface films, Reinhold Publ. Corp., New York.
  • 11. Hoult D. (1969): Oil on the sea, Plenum Press, New York.
  • 12. Hühnerfuss H., Alpers W., Lange P. A., Walter W. (1981): Attenuation of wind waves by artificial surface films of different chemical structure. J. Geophys. Res. Lett., 8, 1184-1186.
  • 13. Hühnerfuss H., Garret W. (1981): Experimental sea slicks: their practical application and utilization for basic studies of air-sea interaction. J. Geophys. Res., 86(C1), 439-447.
  • 14. Hühnerfuss H., Lange P. A., Walter W. (1985): Relaxation effects in monolayers and their contribution to water damping, I. Wave induced phase shifts. J. Colloid Interface Sci., 108, 430-441.
  • 15. Hühnerfuss H., Lange P. A., Walter W. (1985): Relaxation effects in monolayers and their contribution to water wave damping. II. The Marangoni phenomenon and gravity wave attenuation. J. Colloid Int. Sci., 108, 442-450.
  • 16. Hühnerfuss H., Walter W., Lange P. A., Alpers W. (1987): Attenuation of wind waves by monomolecular sea slicks and the Marangoni effect. J. Geophys. Res., 92, 3961-3963.
  • 17. James A. M., Prichard F. E. (1974): Practical physical chemistry, Longman Group Ltd.
  • 18. Khalifa S. (1990): An investigation of physical-chemical properties of polluted sea surface by an acoustical method, PhD Thesis, University of Gdańsk, 1990.
  • 19. Khalifa S. S., Linde B., Pogorzelski S., Śliwiński A. (1992): Aspects of the physical properties and the visco-elastic features of the sea water - oil system. Oceanologia, 32, 19-28.
  • 20. Khalifa S. S., Linde B., Pogorzelski S., Śliwiński A. (1992): Detection of derivative substances on a sea surface by statistical analysis of scattered acoustic signals. Oceanologia, 32, 29-40.
  • 21. Lamb H. (1945): Hydrodynamics, Dover, New York.
  • 22. Leonard F. (1970): Survey of literature on reflection and scattering of sound waves at the sea surface. J. Acoust. Soc. Am., 47(5), 1209-1228.
  • 23. Linde B., Pogorzelski S., Śliwiński A. (1983): Determination of the surface wave amplitude on water surface by acoustic pulse method. Acoustics Letters, 7(6), 83-85.
  • 24. Linde B., Pogorzelski S., Sliwiński A. (1984): Attenuation measurements on a water surface in the frequency range 20-60 Hz by the ultrasonic pulse method. Acoustics Letters, 7(7), 96-99.
  • 25. Linde B. (1999): Acoustical Spectroscopy of Cyclic & Heterocyclic Compounds, Ketones and Polluted Water Surface, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.
  • 26. Lucassen-Reynders E. H., Lucassen J. (1969): Properties of capillary waves. Adv. Colloid Interface Sci., 2, 347-395.
  • 27. Pogorzelski S. J. (1992): Characteristics of acoustic scattering from a wind-created water surface covered with monomolecular organic films. Dyn. Atmos. Oceans, 17, 63-78.
  • 28. Pogorzelski S. J. (1991): The influence of crude oil spills on the sea surface on ultrasound scattering. Oceanologia, 31, 107-118.
  • 29. Pogorzelski S. J., Boniewicz-Szmyt K. (2016): Thermoelastic surface properties of seawater in coastal areas of the Baltic Sea. Oceanologia, 58(1), 25-38.
  • 30. Pogorzelski S. J., Mazurek A. Z., Szczepanska A. (2013): In-situ surface wettability parameters of submerged in brackish water surfaces derived from captive bubble contact angle studies as indicators of surface condition level. J. of Marine Systems, 119, 50-60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-734b83bb-e95d-4d56-952c-618c6cdacb45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.