Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An element of the circular economy strategy is processing waste into useful products. This study aimed to produce materials incorporating hazardous waste contaminated with heavy metals. Sulfur polymer cement (SPC) modified with natural tung oil was used as the binder. Compared to Portland cement, sulfur-based binders not only reduce CO₂ emissions but also enable the utilization of sulfur waste, such as byproducts from the petrochemical industry. Samples were prepared using an SPC mod-ified with different amounts of tung oil (2–8 wt % S) and two filler mixtures containing 6 and 12% waste (mixes A and B). The composites were tested for water absorption by immersion, compressive strength, and metal leaching toxicity (TCLP test and EN 12457-4). The water absorption of all samples was below 1.6 wt %. Worse results were observed for monoliths with higher waste content (mix B). The highest mechanical strength was observed for samples where the sulfur binder was modified with 4 wt % tung oil. The compressive strength of composites based on mixtures A and B was 8.0 and 11.5 MPa, respectively. Analysis of the samples showed an uneven coating of waste particles by the sulfur binder. The TCLP test indicated a potential risk of heavy metal leaching in an acidic environment (pH ca. 4). Conversely, the EN 12457-4 test demonstrated low heavy metal leaching for all mixture A composites.
Czasopismo
Rocznik
Tom
Strony
73--83
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] VAN STIJN A., MALABI EBERHARDT L.C., WOUTERSZOON JANSEN B., MEIJER A., A circular economy life cycle assessment (CE-LCA) model for building components, Resour. Conserv. Recycl., 2021, 174. DOI: 10.1016/j.resconrec.2021.105683.
- [2] BIELIATYNSKYI A., YANG S., KRAYUSHKINA K., SHAO M., TA M., Study of the possibility of using sulfur asphalt and sulfur concrete in road construction, Mater. Sci. Poland, 2023, 41 (2). DOI: 10.2478/msp-2023-0016.
- [3] LIU J., YAN C., LI J., ZHANG J., LIU S., Investigation on the mechanical properties and strengthening mechanism of solid-waste–sulfur-based cementitious composites, Mater., 2023, 16 (3). DOI: 10.3390/ma16031203.
- [4] PARKER D.J., PETCHER S., CERVINI L., GRIFFIN J.M., AKHTAR R., HASELL T., Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture, J. Mater. Chem. A Mater., 2017, 5 (23), 11682–11692. DOI: 10.1039/C6TA09862B.
- [5] WOJTACHA-RYCHTER K., KUCHARSKI P., SMOLINSKI A., Conventional and alternative sources of thermal energy in the production of cement – an impact on CO2 emission, Energies, 2021, 14 (6). DOI: 10.3390/en14061539.
- [6] ADESINA A., Recent advances in the concrete industry to reduce its carbon dioxide emissions, Environ. Chall., 2020, 1. DOI: 10.1016/j.envc.2020.100004.
- [7] GRAHAM M.J., LOPEZ C.V., MALADENIYA C.P., TENNYSON A.G., SMITH R.C., Influence of pozzolans on plant oil-sulfur polymer cements: More sustainable and chemically-resistant alternatives to Port-land cement, J. Appl. Polym. Sci., 2023, 140, 13. DOI: 10.1002/app.53684.
- [8] MÜLLER F.G., LISBOA L.S., CHALKER J.M., Inverse vulcanized polymers for sustainable metal remediation, Adv. Sust. Syst., 2023, 7 (5). DOI: 10.1002/adsu.202300010.
- [9] SZAJERSKI P., CELINSKA J., BEM H., GASIOROWSKI A., ANYSZKA R., Dziugan P., Radium content and radon exhalation rate from sulfur polymer composites (SPC) based on mineral fillers, Constr. Build. Mater., 2019, 198, 390–398. DOI: 10.1016/j.conbuildmat.2018.11.262.
- [10] BANASZKIEWICZ K., CZECHOWSKI F., Tung oil as an effective modifier for sulfur polymer cement and its performance in galvanic waste encapsulation, Heliyon, 2020, 6 (5). DOI: 10.1016/j.heliyon.2020.e03908.
- [11] YUSUPOVA A., BARAEVA L., MEDVEDEVA G., BOBRYSHEV A., Technology and properties of high-strength sulfur concrete modified with organometallophosphate compounds, Mater. Today: Proc., 2021, 38 (4), 1648–1652. DOI: 10.1016/j.matpr.2020.08.176.
- [12] AMANOVA N., TURAEV K., SHADHAR M.H., TADJIXODJAYEVA U., JUMAEVA Z., BERDIMURODOV E., ELIBOEV I., HOSSEINI-BANDEGHARAEI A., Sulfur-based concrete: Modifications, advancements, and future prospects, Constr. Build. Mater., 2024, 435. DOI: 10.1016/j.conbuildmat.2024.136765.
- [13] SMITH A.D., SMITH R.C., Tennyson A.G., Polymer cements by copolymerization of waste sulfur, oleic acid, and pozzolan cements, Sust. Chem. Pharm., 2020, 16. DOI: 10.1016/j.scp.2020.100249.
- [14] U.S. EPA, Toxicity characteristic leaching procedure, Fed. Regist., 1990, 55 (61), 11798–11877.
- [15] EN 12457-4. Characterization of Waste Leaching; Compliance Test for Leaching of Granular Waste Materials and Sludges. Part 4: One-Stage Batch Test at a Liquid to Solids Ratio of 10 L/kg for Materials with Particle Size below 10 Mm (With or without Size Reduction), 2002.
- [16] Council of the European Union, 2003/33/EC., Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC, Official Journal L 011, 16.1.2003, Official Journal of European Communities, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7345aadd-79da-4f70-87b1-e2f618ed669b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.