PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of MoS2 Nanosheet Fillers on Poly(vinyl alcohol) Nanofibre Composites Obtained by the Electrospinning Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ zastosowania wypełniaczy MoS2 na kompozyty z nanowłókien poli(alkoholu winylowego) otrzymane metodą elektroprzędzenia
Języki publikacji
EN
Abstrakty
EN
The graphene-like two dimensional (2D) inorganic materials have been been shown great interest for a variety of applications. In this work, polymer composite nanofibres containing molybdenum disulfide (MoS2) nanosheets were obtained by electrospinning. The MoS2 nanosheets were well dispersed inside the fibres, and the nanofibres maintained the fibre morphology well with the MoS2 nanosheets embedded. The incorporation of MoS2 nanosheets changes polymer nanofibre morphology from round to ribbon-like. Moreover, through thermogravimetric (TG) analysis and dynamic mechanical thermal analysis (DMTA) measurements, it was found that the MoS2 nanosheets as an additive material led to an increase in thermal stability and in the storage modulus. This work comprises an extensive approach to producing a novel 2D inorganic-organic composite structure, which should be applicable for membrane engineering with enhanced thermal and mechanical stability.
PL
Dwuwymiarowe nieorganiczne materiały podobne do grafenu wywołały liczne zainteresowanie w różnych zastosowaniach. W pracy otrzymano metodą elektroprzędzenia kompozytowe nanowłókna polimerowe zawierające disiarczek molibdenu (MoS2). Nanoskładniki MoS2 były dobrze rozproszone we włóknach, a ich morfologia była na zadowalającym poziomie. Włączenie nanoskładników MoS2 zmienia nanowłókna polimerowe z morfologii okrągłej na wstążkową. Co więcej, dzięki analizie termograwimetrycznej (TG) i pomiarom dynamicznej mechanicznej analizy termicznej (DMTA) stwierdzono, że dodatek MoS2 może zapewnić wzrost stabilności termicznej i zwiększyć moduł przechowywania. Praca prezentuje rozszerzone podejście do produkcji nowej dwuwymiarowo nieorganiczno-organicznej struktury kompozytowej, która może mieć zastosowanie w wytwarzaniu membran o podwyższonej stabilności termicznej i mechanicznej.
Rocznik
Strony
62--67
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Xi’an University of Science and Technology, Department of Materials Science and Engineering, Xi’an 710054, People’s Republic of China
autor
  • Xi’an University of Science and Technology, Department of Materials Science and Engineering, Xi’an 710054, People’s Republic of China
autor
  • Xi’an University of Science and Technology, Department of Materials Science and Engineering, Xi’an 710054, People’s Republic of China
autor
  • Xi’an University of Science and Technology, Department of Materials Science and Engineering, Xi’an 710054, People’s Republic of China
  • Xi’an University of Science and Technology, Department of Materials Science and Engineering, Xi’an 710054, People’s Republic of China
autor
  • Xi’an University of Science and Technology, School of Safety Science and Engineering, Xi’an 710054, China
Bibliografia
  • 1. Jiang T, Carbone E J, Lo KWH, Laurencin CT. Electrospinning of Polymer Nanofibers for Tissue Regeneration. Prog. Polym. Sci. 2015; 46(5): 1-24.
  • 2. Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasche P. Fibers For Hearts: A Critical Review On Electrospinning For Cardiac Tissue Engineering. Acta Biomater., 2017; 48(1): 20-40.
  • 3. Ahmed FE, Lalia BS, Hashaikeh R. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015; 356(1): 15-30.
  • 4. Zhou Z, Lin W, Wu X F. Electrospinning Ultrathin Continuous Cellulose Acetate Fibers for High-Flux Water Filtration. Colloids Surf. A, 2016; 494(1): 21-29.
  • 5. Aruna ST, Balaji LS, Kumar SS, Prakash BS. Electrospinning in Solid Oxide Fuel Cells – A Review. Renewable Sustainable Energy Rev. 2017; 67(5): 673-682.
  • 6. Boland CS, Barwich S, Khan U, Coleman JN. High Stiffness Nano-Composite Fibres from Polyvinylalcohol Filled with Graphene and Boron Nitride. Carbon 2016; 99(4): 280-288.
  • 7. Naebe M, Lin T, Staiger MP, Dai L, Wang X. Electrospun Single-Walled Carbon Nanotube/Polyvinyl Alcohol Composite Nanofibers: Structure-Property Relationships. Nanotechnology 2008; 19(30): 305702.
  • 8. Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angew. Chem. Int. Ed., 2011; 50(47): 11093-11097.
  • 9. Matte HS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CN. MoS2 and WS2 Analogues of Graphene. Angew. Chem. Int. Ed. 2010; 49(24): 4059-4062.
  • 10. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011; 331(6017): 568-571.
  • 11. Chang MJ, Cui WN, Liu J, Wang K, Du HL, Qiu L, Fan SM, Luo ZM. Construction of Novel TiO2/Bi4Ti3O12/Mos2 Core/Shell Nanofibers for Enhanced Visible Light Photocatalysis. J. Mater. Sci. Technol. 2020; 36(1): 97-105.
  • 12. Xiang Q, Yu J, Jaroniec M. Synergetic Effect of Mos2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of Tio2 Nanoparticles. J. Am. Chem. Soc., 2012; 134(15): 6575-6578.
  • 13. Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H. Electrochemically Reduced Single-Layer Mos2 Nanosheets: Characterization, Properties, and Sensing Applications. Small, 2012; 8(14): 2264-2270.
  • 14. Tai SY, Liu CJ, Chou SW, Chien FSS, Lin JY, Lin TW. Few-Layer Mos2 Nanosheets Coated onto Multi-Walled Carbon Nanotubes as a Low-Cost and Highly Electrocatalytic Counter Electrode for Dye-Sensitized Solar Cells. J. Mater. Chem., 2012; 22(47): 24753-24759.
  • 15. Lee HS, Min SW, Chang YG, Park MK, Nam T, Kim H, Kim JH, Ryu S, Im S. Mos2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Lett., 2012; 12(7): 3695-3700.
  • 16. Laursen AB, Kegnæs S, Dahl S, Chorkendorff I. Molybdenum Sulfides-Efficient and Viable Materials for Electro-and Photoelectrocatalytic Hydrogen Evolution. Energy Environ. Sci. 2012; 5(2): 5577-5591.
  • 17. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011; 6(3): 147-150.
  • 18. Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W, Tok AI, Zhang Q, Zhang H. Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. Small 2012; 8(1): 63-67.
  • 19. Bissessur R, White W. Novel Alkyl Substituted Polyanilines/Molybdenum Disulfide Nanocomposites. Mater. Chem. Phys. 2006; 99(2-3): 214-219.
  • 20. Lin BZ, Ding C, Xu BH, Chen ZJ, Chen YL. Preparation and Characterization of Polythiophene/Molybdenum Disulfide Intercalation Material. Mater. Res. Bull. 2009; 44(4): 719-723.
  • 21. Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z. Preparation Of Poly(Vinyl Alcohol) Nanocomposites With Molybdenum Disulfide (MoS2): Structural Characteristics and Markedly Enhanced Properties. RSC Adv. 2012; 2(31): 11695-11703.
  • 22. Liu J, Chang M J, Du HL. Facile Preparation of Cross-Linked Porous Poly(Vinyl Alcohol) Nanofibers by Electrospinning. Mater. Lett. 2016; 183(21): 318-321.
  • 23. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003;63(15):2223-2253.
  • 24. Tao J, Shivkumar S. Molecular weight dependent structural regimes during the electrospinning of PVA. Mater. Lett., 2007;61(11-12):2325-2328.
  • 25. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005;26(30):5999-6008.
  • 26. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater., 2009;19(14):2297-2302.
  • 27. Bai H, Li C, Wang X, Shi G. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun., 2010;46(14):2376-2378.
  • 28. Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K. Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Composites Part B, 2007;38(2):228-235.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7344a229-5409-4a17-b077-003ff412c140
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.