PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of voltage control strategies for low-voltage networks with high penetration of distributed generation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd metod regulacji napięcia w sieciach elektroenergetycznych niskiego napięcia z dużym udziałem generacji rozproszone
Języki publikacji
EN
Abstrakty
EN
Deterioration of voltage conditions is one of the frequent consequences of connecting an increasing number of photovoltaic sources to the low-voltage (LV) power grid. Under adverse conditions, i.e. low energy consumption and high insolation, microgeneration can cause voltage surges that violate acceptable limits. Research shows that the increase in voltage is the main limitation for connecting new energy microsources to the LV network and forces the reconstruction of the network. An alternative to costly modernizations can be the implementation of appropriate strategies for controlling network operation to maintain the voltage at the required level. The article presents an overview of the methods and concepts of voltage control in a low-voltage network developed so far to mitigate the undesirable phenomenon of voltage boosting. The focus was mainly on local methods - not requiring communication infrastructure - as best suited to the conditions of Polish distribution networks. Gathering the results of many tests and simulations carried out in different conditions and on different models allowed for the formulation of general conclusions and can be a starting point for further research on acontrol method that can be widely used in the national power system.
PL
Jedną z częstych konsekwencji przyłączania do sieci elektroenergetycznej niskiego napięcia (nn) coraz większej liczby źródeł fotowoltaicznych jest pogorszenie warunków napięciowych. W niesprzyjających warunkach – przy niskim poborze energii i wysokim nasłonecznieniu – mikrogeneracja może powodować podskoki napięcia przekraczające dopuszczalne granice. Badania pokazują, że wzrost napięcia stanowi podstawowe ograniczenie dla przyłączania nowych mikroźródełenergii do sieci nn i wymusza przebudowę sieci. Alternatywą dla kosztownych modernizacji może być wdrożenie odpowiednich strategii sterowania pracą sieci pozwalających utrzymać napięcie na wymaganym poziomie. W artykule zaprezentowano przegląd opracowanych dotychczas metod i koncepcji regulacji napięcia w sieci nn mających na celu opanowanie niepożądanego zjawiska podbicia napięcia. Skupiono się głównie na metodach lokalnych – nie wymagających do prawidłowego działania infrastruktury komunikacyjnej –jako najlepiej przystosowanych do warunków polskich sieci dystrybucyjnych. Zebranie wyników badań i symulacji, przeprowadzonych przy różnychzałożeniach i na różnych modelach, pozwoliło na sformułowanie ogólnych wniosków i może stanowić punkt wyjścia do dalszych badań nad metodą sterowania mogącą znaleźć szerokie zastosowanie w krajowym systemie elektroenergetycznym.
Rocznik
Strony
60--65
Opis fizyczny
Bibliogr. 70 poz., tab.
Twórcy
autor
  • Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Lublin, Poland
Bibliografia
  • [1] Aggarwal M., Gupta S. K., Sudan M., Kasal G.: D-STATCOM control in low voltage distribution system with distributed generation. 3rd International Conference on Emerging Trends in Engineering and Technology, ICETET 2010, 2010, 426–429, [http://doi.org/10.1109/ICETET.2010.148].
  • [2] Alam M. J.E., Muttaqi K. M., Sutanto D.: An approach for online assessment of rooftop solar PV impacts on low-voltage distribution networks. IEEE Transactions on Sustainable Energy 5(2)/2014, 663–672,[http://doi.org/10.1109/TSTE.2013.2280635].
  • [3] Andrén F., Bletterie B., Kadam S., Kotsampopoulos P., Bucher C.: On the Stability of Local Voltage Control in Distribution Networks with a High Penetration of Inverter-Based Generation. IEEE Transactions on Industrial Electronics 62(4)/2015, 2519–2529, [http://doi.org/10.1109/TIE.2014.2345347].
  • [4] Appen J. von, Braun M., Stetz T., Diwold K., Geibel D.: Time in the sun: The challenge of high PV penetration in the German electric grid. IEEE Power and Energy Mag.11(2)/2013, 55–64, [http://doi.org/10.1109/MPE.2012.2234407].
  • [5] Aziz T., KetjoyN.: Enhancing PV Penetration in LV Networks Using Reactive Power Control and On Load Tap Changer with Existing Transformers. IEEE Access 6/2017, 2683–2691, [http://doi.org/10.1109/ACCESS.2017.2784840].
  • [6] Barr J., Majumder R.: Integration of distributed generation in the Volt/VAR management system for active distribution networks. IEEE Transactions on Smart Grid 6(2)/2015, 576–586, [http://doi.org/10.1109/TSG.2014.2363051].
  • [7] Biserica M., Berseneff B., Bésanger Y., Kiény C.: Upgraded coordinated voltage controlfor distribution systems. 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011, 2011, 1–6, [http://doi.org/10.1109/PTC.2011.6019328].
  • [8] Bletterie B., Kadam S., Bolgaryn R., Zegers A.: Voltage Control with PV Inverters in Low Voltage Networks-In Depth Analysis of Different Concepts and Parameterization Criteria. IEEE Transactions on Power Systems 32(1)/2017, 177–185, [http://doi.org/10.1109/TPWRS.2016.2554099].
  • [9] Braun M., Stetz T., Reimann T., Valov B., Arnold G.: Optimal Reactive Power Supply in Distribution Networks –Technological and Economic Assessmentfor PV-Systems. Frauhofer IWES 49/2009, 1–10,[http://doi.org/10.4229/24thEUPVSEC2009-5AO.7.5].
  • [10] Caldon R., Coppo M., Turri R.: A network voltage control strategy for LV inverter interfaced users. 8thMediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), 2012,1–5, [http://doi.org/10.1049/cp.2012.2023].
  • [11] Caldon R., Coppo M., Turri R.: Coordinated voltage control in MV and LV distribution networks with inverter-interfaced users. IEEEGrenoble Conference PowerTech POWERTECH 2013, 1–5,[http://doi.org/10.1109/PTC.2013.6652491].
  • [12] Condon D., McPhail D., Ingram D.: Application of low voltage statcom to correct voltage issues caused by inverter energy systems. Australasian Universities Power Engineering Conference (AUPEC), 2016, 1–6,[http://doi.org/10.1109/aupec.2016.7749332].
  • [13] Constantin A., Lazar R. D.: Open Loop Q(U) Stability Investigation in Case of PV Power Plants. Proc. 27thEur. Photovolt. Solar Energy Conf. Exhib., 2012, 3745–3749.
  • [14] Conti S., Greco A., Messina N., Raiti S.: Local voltage regulation in LV distribution networks with PV distributed generation. International Symposium on Power Electronics, Electrical Drives, Automation and MotionSPEEDAM 2006, 519–524, [http://doi.org/10.1109/SPEEDAM.2006.1649827].
  • [15] Demirok E., González P. C., Frederiksen K. H.B., Sera D., Rodriguez P., Teodorescu R.: Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids. IEEE Journal of Photovoltaics1(2), 2011, 174–182,[http://doi.org/10.1109/JPHOTOV.2011.2174821].
  • [16] Dong J., Xue Y., Olama M., Kuruganti T., Nutaro J., Winstead C.: Distribution Voltage Control: Current Status and Future Trends. 9thIEEE International Symposium on Power Electronics for Distributed Generation SystemsPEDG 2018,[http://doi.org/10.1109/PEDG.2018.8447628].
  • [17] Efkarpidis N., Wijnhoven T., Gonzalez C., Rybel T., Driesen J.: Coordinated voltage control scheme for Flemish LV distribution grids utilizing OLTC transformers and D-STATCOM’s. 12thIET International Conference on Developments in Power System Protection, DPSP 2014, 1–6.
  • [18] Einfalt A., Kupzog F., Brunner H., Lugmaier A.: Control strategies for smart low voltage grids –the Project DG DemoNet –Smart LV Grid. CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, 2012, 1–4, [http://doi.org/10.1049/cp.2012.0824].
  • [19] Einfalt A., Zeilinger F., Schwalbe R., Bletterie B., Kadam S.: Controlling active low voltage distribution grids with minimum efforts on costs and engineering. IECON Proceedings (Industrial Electronics Conference), 2013, 7456–7461, [http://doi.org/10.1109/IECON.2013.6700374].
  • [20] Grilo A., Casaca A., Nunes M., Bernardo A., Rodrigues P., Almeida J. P.: Amanagement system for low voltage grids. IEEE Manchester PowerTech, 2017, 1–6, [http://doi.org/10.1109/PTC.2017.7980826].
  • [21] Guo Y., Lin Y., Sun M.: The impact of integrating distributed generations on the losses in the smart grid. IEEE Power and Energy Society General Meeting, 2011, 1–6, [http://doi.org/10.1109/PES.2011.6039931].
  • [22] Han X., Kosek A. M., Morales Bondy D. E., Bindner H. W., You S., Tackie D. V., Mehmedalic J., ThordarsonF.: Assessment of distribution grid voltage control strategies in view of deployment. IEEE International Workshop on Intelligent Energy Systems, IWIES 2014, 46–51,[http://doi.org/10.1109/IWIES.2014.6957045].
  • [23] Hasan S., Luthander R., Juan De S.: Reactive Power Control for LV Distribution Networks Voltage Management. IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2018, 1–6,[http://doi.org/10.1109/ISGTEurope.2018.8571817].
  • [24] Hashemi S., Østergaard J., Degner T., Brandl R., Heckmann W.: Efficient Control of Active Transformers for Increasing the PV Hosting Capacity of LV Grids. IEEE Transactions on Industrial Informatics13(1), 2017, 270–277, [http://doi.org/10.1109/TII.2016.2619065].
  • [25] Heidl M.: MorePV2grid –More functionalities for increased integration of PV into grid –report, 2013.
  • [26] Hempel S., Schmidt J. D., Gambn P., Tröster E.: Smart network control with coordinated PV infeed.IET Renewable Power Generation 13(5), 2019, 661–667, [http://doi.org/10.1049/iet-rpg.2018.5268].
  • [27] Holt M., Grosse-Holz G., Rehtanz C.: Line Voltage Regulation in Low Voltage Grids. CIRED Workshop –Ljubljana, 2018.
  • [28] Holt M., Maasmann J., Rehtanz C.: Line voltage regulator based on magnetic-controlled inductors for low-voltage grids. CIRED –Open Access Proceedings Journal2017, 278–281, [http://doi.org/10.1049/oap-cired.2017.0207].
  • [29] Hu J., Marinelli M., Coppo M., Zecchino A., Bindner H. W.: Coordinated voltage control of a decoupled three-phase on-load tap changer transformer and photovoltaic inverters for managing unbalanced networks. Electric Power Systems Research, 2016, [http://doi.org/10.1016/j.epsr.2015.10.025].
  • [30] J. Zhao, Y. Li, P. Li, C. Wang H. Ji, L. Ge, Y. Song: Local voltage control strategy of active distribution network withPV reactive power optimization. IEEE Power & Energy Society General Meeting, 2017, 1–5,[http://doi.org/10.1109/PESGM.2017.8274386].
  • [31] Jamperez M., Yang G., Kjaer S. B.: Voltage regulation in LV grids by coordinated volt-var control strategies. Journal of Modern Power Systems and Clean Energy2(4)/2014, 319–328, [http://doi.org/10.1007/s40565-014-0072-0].
  • [32] Kacejko P., Adamek S., Wancerz M., Jędrychowski R.: Ocena możliwości opanowania podskoków napięcia w sieci nn o dużym nasyceniu mikroinstalacjami fotowoltaicznymi. Wiadomości Elektrotechniczne85(9)/2017, 20–26.
  • [33] Kacejko P., Pijarski P.: Mitigation of Voltage Rise Caused by Intensive PV Development in LV Grid. 7thSolar Integration Workshop, 2017, 7–11.
  • [34] Kacejko P., Pijarski P.: Ograniczenie wzrostu napiecia spowodowane intensywnym rozwojem fotowoltaiki w sieci nn. Energia Elektryczna 9/2018.
  • [35] Kanchev H., Colas F., Lazarov V., Francois B.: Emission reduction and economical optimization of an urban microgrid operation including dispatched PV-based active generators. IEEE Transactions on Sustainable Energy5(4)/2014, 1397–1405, [http://doi.org/10.1109/TSTE.2014.2331712].
  • [36] Karthikeyan N., Pokhrel B. R., Pillai J. R., Bak-Jensen B.: Coordinated voltage control of distributed PV inverters for voltage regulation in low voltage distribution networks. IEEE PES Innovative Smart Grid Technologies Conference EuropeISGT-Europe 2017, 1–6,[http://doi.org/10.1109/ISGTEurope.2017.8260279].
  • [37] Kerber G., Witzmann R., Sappl H.: Voltage limitation by autonomous reactive power control of grid connected photovoltaic inverters. CPE 2009 –6thInternational Conference-Workshop -Compatibility and Power Electronics, 2009, 129–133, [http://doi.org/10.1109/CPE.2009.5156024].
  • [38] Kowalak R., Małkowski R.: Energoelektroniczne kompensatory bocznikowe jako sterowane źródła mocy biernej. Acta Energetica, Vol. 1/6, 2011, 13–20.
  • [39] Kraiczy M., Fakhri A. L., Stetz T., Braun M.: Do it locally: Local voltage support by distributed generation–A management summary. Int. Energy Agency, Paris, France, Tech. Rep.IEA-PVPS T14-08, 2017.
  • [40] Liu X., Aichhorn A., Liu L., Li H.: Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Transactions on Smart Grid3/2, 2012,897–906, [http://doi.org/10.1109/TSG.2011.2177501].
  • [41] Mahmud N., Zahedi A.: Review of control strategies for voltage regulationof the smart distribution network with high penetration of renewable distributed generation. Renewable and Sustainable Energy Reviews64/2016, 582–595, [http://doi.org/10.1016/j.rser.2016.06.030].
  • [42] Marggraf O., Laudahn S., Engel B., Lindner M., Aigner C., Witzmann R., Schoeneberger M., Patzack S., Vennegeerts H., Cremer M., Meyer M., Schnettler A., Berber I., Buelo T., Brantl J., WirtzF., Frings R., Pizzutto F.:U-Control –Analysis of Distributed and Automated Voltage Control in current and future Distribution Grids. International ETG Congress 2017, 1–6.
  • [43] Mawarni D. E., Ali M. M.V. M., Nguyen P. H., Kling W. L., JereleM.: A case study of using OLTC to mitigate overvoltage in a rural European low voltage network. Proceedings of the Universities Power Engineering Conference, 2015, 1–5 [http://doi.org/10.1109/UPEC.2015.7339875].
  • [44] Olivier F., Aristidou P., Ernst D., van Cutsem T.: Active Management of Low-Voltage Networks for Mitigating Overvoltages Due to Photovoltaic Units. IEEE Transactions on Smart Grid 7(2)/2016, 926–936,[http://doi.org/10.1109/TSG.2015.2410171].
  • [45] Othman M. M., Ahmed M. H., Salama M. M.A.: A Probabilistic Economic Assessment Approach for Active Power Curtailment of Photovoltaic Based Distributed Generators. IEEE Power and Energy Society General Meeting, 2018, 1–5,[http://doi.org/10.1109/PESGM.2018.8586463].
  • [46] Pachanapan P., Anaya-Lara O., DyśkoA., Lo K. L.: Adaptive zone identification for voltage level control in distribution networks with DG. IEEE Transactions on Smart Grid3/4, 2012, 1594–1602,[http://doi.org/10.1109/TSG.2012.2205715].
  • [47] Pal K., Kumar Panigrahi B., Mohapatra S., Mohapatra A.:Impact of STATCOM on voltage profile in a DG penetrated grid connected system. IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2017, 2017, 1–5, [http://doi.org/10.1109/ICCPCT.2017.8074213].
  • [48] Pijarski P., Kacejko P.: Optimization of the Selection of P(U) and Q(U) Characteristic Parameters of Solar Microinverters. Acta Energetica 2/2019,6–13,[http://doi.org/10.12736/issn.2330-3022.2019201].
  • [49] Procopiou A. T., Ochoa L. F.: Voltage Control in PV-Rich LV Networks Without RemoteMonitoring. IEEE Transactions on Power Systems32(2)/2017, 1224–1236, [http://doi.org/10.1109/TPWRS.2016.2591063].
  • [50] Reeves D., Nourbakhsh G., Mokhtari G., Ghosh A.: A distributed control based coordination scheme of household PV systems for overvoltage prevention. IEEE Power and Energy Society General Meeting, 2013, 1–5,[http://doi.org/10.1109/PESMG.2013.6672774]. [51] Rynek fotowoltaiki w Polsce. Raport VII edycja, Warszawa 2019.
  • [52] Samadi A., Shayesteh E., Eriksson R., Rawn B., Söder L.: Coordinated Active Power-Dependent Voltage Regulation in Distribution Grids With PV Systems. Renewable Energy 71/2014, 315–323,[http://doi.org/10.1016/j.renene.2014.05.046].
  • [53] Sansawatt T., Ochoa L. F., Harrison G. P.: Integrating distributed generation using decentralised voltageregulation. IEEE PES General Meeting, PES 2010, 1–6, [http://doi.org/10.1109/PES.2010.5588127].
  • [54] Schoeneberger M. 2017: Derivation of a Q(U)-control Tolerance Band for Inverters in Order to Meet Voltage Quality Criteria. 7thSolar Integration Workshop.
  • [55] Schwalbe R., Brunner H., Stifter M., Abart A., Traxler E., Radauer M., Niederhuemer W.: DG-demonet smart LV grid-increasing hosting capacityof LV grids by extended planning and voltage control. International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 2015, 63–69,[http://doi.org/10.1109/SEDST.2015.7315184].
  • [56] Shoubaki E., Essakiappan S., Bhowmik P., Manjrekar M., Enslin J., Laval S., Vukojevic A., Handley J.: Distributed μ-STATCOM for voltage supportand harmonic mitigationon low voltage networks. IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, 925–930,[http://doi.org/10.1109/APEC.2017.7930807].
  • [57] Stetz T.: Autonomous Voltage Control Strategies in Distribution Grids with Photovoltaic Systems: Technicaland Economic Assessment, 2014.
  • [58] Stetz T., Marten F., Braun M.: Improved low voltage grid-integrationof photovoltaic systems in Germany. IEEE Transactions on Sustainable Energy 4/2, 2013, 534–542,[http://doi.org/10.1109/TSTE.2012.2198925].
  • [59] Tanaka K., Oshiro M., Toma S., Yona A., Senjyu T., Funabashi T., Kim C. H.: Decentralised control of voltage in distribution systems by distributed generators. IET Generation,Transmission and Distribution 4(11), 2010, 1251–1260,[http://doi.org/10.1049/iet-gtd.2010.0003].
  • [60] Tengku Hashim T. J., Mohamed A., Shareef H.: A review on voltage control methods for active distribution networks. Przegląd Elektrotechniczny88(6), 2012, 304–312.
  • [61] Tonkoski R., Lopes L. A.C., El-Fouly T. H.M.: Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention. IEEE Transactions on Sustainable Energy2(2)/2011, 139–147,[http://doi.org/10.1109/TSTE.2010.2098483].
  • [62] Tonkoski R., Lopes L. A.C., EL-Fouly T. H.M.: Droop-based active power curtailment for overvoltage prevention in grid connected PV inverters. IEEE International Symposium on Industrial Electronics, 2010, 2388–2393,[http://doi.org/10.1109/ISIE.2010.5637511].
  • [63] Tsuji T., Goda T., Ikeda K., Tange S.: Autonomous decentralized voltage profile control of distribution network considering time-delay. International Conference on Intelligent Systems Applications to Power SystemsISAP, 2007, 1–6, [http://doi.org/10.1109/ISAP.2007.4441669].
  • [64] Tsuji T., Hashiguchi T., GodaT., Horiuchi K., Kojima Y.: Autonomous decentralized voltage profile control using multi-agent technology considering time-delay. Transmission and Distribution Conference and Exposition: Asia and Pacific, 2009, 1–8, [http://doi.org/10.1109/TD-ASIA.2009.5356968].
  • [65] Tsuji T., Hashiguchi T., Goda T., Shinji T., Tsujita S.: A Study of Autonomous Decentralized Voltage Profile Control Method considering Control Priority in Future Distribution Network. EEJ Transactions on Power and Energy129(12), 2009, 1533–1544.
  • [66] Tsuji T., Oyama T., Hashiguchi T., Goda T., Horiuchi K., Tange S., Shinji T., Tsujita S.: A study on autonomous decentralized voltage controllerin distribution network considering control priority. 3rdInternational Conference on Clean Electrical Power: Renewable Energy Resources ImpactICCEP,2011, 749–754, [http://doi.org/10.1109/ICCEP.2011.6036387].
  • [67] Unigwe O., Okekunle D., Kiprakis A.: Economical distributed voltage controlin low-voltage grids with high penetration of photovoltaic. CIRED –Open Access Proceedings Journal/1, 2017, 1722–1725, [http://doi.org/10.1049/oap-cired.2017.1227].
  • [68] Wajahat M., Khalid H. A., Bhutto G. M., Bak C. L.: A comparative study into enhancing the PV penetration limit of a LV CIGRE residential network with distributed grid-tied single-phase PV systems. Energies 12(15)/2019, [http://doi.org/10.3390/en12152964].
  • [69] Xin H., Lu Z., Qu Z., Gan D., Qi D.: Cooperative control strategy for multiple photovoltaic generators in distribution networks. IET Control Theory and Applications 5(14)/2011, 1617–1629, [http://doi.org/10.1049/iet-cta.2010.0538].
  • [70] Xin H., Qu Z., Seuss J., Maknouninejad A.: A self-organizing strategy for power flow control of photovoltaic generators in a distribution network.IEEE Transactions on Power Systems26(3), 2011, 1462–1473,[http://doi.org/10.1109/TPWRS.2010.2080292]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73424f32-9fda-422a-b981-8a2f3e78f398
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.