PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

How To Construct Support Vector Machines Without Breaching Privacy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the problem of data sharing among multiple parties in the following scenario: without disclosing their private data to each other, multiple parties, each having a private data set, want to collaboratively construct support vector machines using a linear, polynomial or sigmoid kernel function. To tackle this problem, we develop a secure protocol for multiple parties to conduct the desired computation. In our solution, multiple parties use homomorphic encryption and digital envelope techniques to exchange the data while keeping it private. All the parties are treated symmetrically: they all participate in the encryption and in the computation involved in learning support vector machines.
Słowa kluczowe
Twórcy
autor
  • School of Information Technology and Engineering, University of Ottawa, Canada
autor
  • Center for High Assurance Computer Systems, Naval Research Laboratory, USA
autor
  • School of Information Technology and Engineering, University of Ottawa, Canada. Institute for Computer Science, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Aggarwal G., Mishra N., and Pinkas B. Secure computation of the kth-rankerd element. In EUROCRYPT, 40-55, 2005.
  • 2. Agrawal R. and Srikant R. Privacy-preserving data mining. In Proceedings of the ACM SIGMOD Conference on Management of Data, 439-450, ACM Press, May 2000.
  • 3. Gehrke J.E., Evfimievshi A., and Srikant R. Limiting privacy breaches in privacy preserving data mining. In Proceedings of the 22nd ACM SIGMOD Symposium on Principles of Database Systems, San Diego, CA, June 2003.
  • 4. Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2): 121 -167, 1998.
  • 5. Cortes C, and Vapnik V. Support vector networks. Machine Learning, 20(3):273-297, 1995.
  • 6. Shawe-Taylor J., and Cristianini N. An introduction to support vector machines. In Cambridge University Press.
  • 7. Domingo-Ferrer J. A provably secure additive and multiplicative privacy homomorphism. In Information Security Conference, 471-483, 2002.
  • 8. Du W., and Zhan Z. Using randomized response techniques for privacy- preserving data mining. In Proceedings of The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24-27, 2003.
  • 9. Dwork C., and Nissim K. Privacy-preserving data mining on vertically partitioned databases. In CRYPTO 2004, 528-544.
  • 10. Goethals B, Laur S., Lipmaa H., and Mielikainen T. On secure scalar product computation for privacy-preserving data mining. In Proceedings of The 7th Annual International Conference of Information Security and Cryptology, volume 3506 of Lecture Notes in Computer Science, 104-120, Seoul, Korea, December 2-3, 2004, Springer-Verlag.
  • 11. Goldreich O. Secure multi-party computation (working draft). http://www.wisdom,weizmann.ac.il/home/oded/public_html/foc.html, 1998.
  • 12. Joachims T. Text categorization with support vector machines: learning with many relevant features. In Proceedings of 10th European Conference on Machine Learning, number 1398, pages 137-142, Chemnitz, DE, 1998.
  • 13. Vaidya J., and Clifton C. Privacy preserving association rule mining in vertically partitioned data. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada.
  • 14. LeCun Y., Botou L., Jackel L., Drucker H., Cortes C., Denker J., Guyon I., Muller U., Sackinger E., Simard P., and Vapnik V. Learning algorithms for classification: A comparison on handwritten digit recognition, 1995.
  • 15. Lindell Y., and Pinkas B. Privacy preserving data mining. In Advances in Cryptology - Crypto2000, Lecture Notes in Computer Science, volume 1880, 2000.
  • 16. Freund R., Girosi F., and Osuna e. Training support vector machines: An application to face detection. In Proceedings of Computer Vision and Pattern Recognition, 130-136.
  • 17. Paillier P. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cyrptography - EUROCRYPT99, 223-238, Prague, Czech Republic, May 1999.
  • 18. Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines. Technical Report, MST-TR-98-14, Microsoft Research, 1998.
  • 19. Rizvi S., and Haritsa J. Maintaining data privacy in association rule mining. In Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.
  • 20. Schlkopf B., Smola A., and Mller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5): 1299—1319, 1998.
  • 21. Smola A., Schlkopf B., and Burge C. Advances in kernel methods — support vector learning. In MIT Press.
  • 22. Sweeney L. k-anonymity: a model for protecting privacy. In International Journal on Uncertainty, fuzziness and Knowledge-based Systems, 10(5), 557¬570, 2002.
  • 23. Vapnik V. The nature of statistical learning theory. In Springer-Verlag, New York, 1995.
  • 24. Vapnik V. Estimation of dependences based on empirical data. In Springer-Verlag, New York, 1982.
  • 25. Wright R., and Yang Z. Privacy-preserving Bayesian network structure computation on distributed heterogeneous data. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004.
  • 26. Yao A. Protocols for secure computations. In Proceedings of the 23rd Annual IEEE Symposium on foundations of Computer Science, 1982.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-733f43fc-36a2-47ee-92be-a2dca71ec6e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.