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Nattapon SONPANOW and Pimpen VEJJAJIVA

SOME CARDINAL CHARACTERISTICS

RELATED TO THE COVERING NUMBER

AND THE UNIFORMITY OF THE MEAGRE

IDEAL

A b s t r a c t. We extend the concepts of splitting, reaping, and

independent families to families of functions and permutations

on ω and define associated cardinal characteristics sf , sp, rf , rp,

if , and ip. We study relationships among cov(M), non(M), and

these cardinals. In this paper, we show that sf = non(M) = sp,

rf = cov(M) ≤ rp, and cov(M) ≤ if , ip.

.1 Introduction

The covering number of the meagre ideal M, cov(M), is the smallest size

of a family of meagre subsets of ωω whose union is ωω and the uniformity
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of M, non(M), is the smallest size of a non-meagre subset of ωω (see

[3] or [7, Chapter III] for more details). It is well-known that ℵ1 ≤ p ≤
cov(M) ≤ r ≤ i ≤ c and ℵ1 ≤ p ≤ s ≤ non(M) ≤ c, where p, s, r, and i

are the pseudo-intersection, the splitting, the reaping, and the independence

numbers respectively (for more details about these numbers see [3] or [6,

Chapter 9]).

The almost disjoint number a is the smallest size of a maximal almost

disjoint family of infinite subsets of ω. It has been shown that both a and

non(M) lie between the bounding number b and c (see [3] and [6]). Almost

disjoint families of functions and permutations on ω and associated cardinal

characteristics, denoted by ae and ap respectively, were studied by Zhang

in [9]. Brendle, Spinas, and Zhang showed in [4] that non(M) is a lower

bound of both ae and ap (cf. [4, Theorem 2.2 and Proposition 4.6]).

Independent families of functions and permutations on ω and associated

cardinal characteristics if and ip were studied by us in [8]. We have shown

that p ≤ if , ip ≤ i and also mentioned that cov(M) is a lower bound of

both if and ip. In this paper, we give a full direct proof of this fact.

We also extend the concepts of splitting and reaping families to families

of functions and permutations on ω and define associated cardinal charac-

teristics sf , sp, rf , and rp. We study relationships among cov(M), non(M),

and these cardinals. As mentioned above, s ≤ non(M) and cov(M) ≤ r.

In this paper, we show that sf = non(M) = sp and rf = cov(M) ≤ rp.

.2 Splitting and reaping families

A set A ⊆ ω splits an infinite set B ⊆ ω if both B ∩ A and B \ A are

infinite. A splitting family S is a family of infinite subsets of ω such that

each infinite set B ⊆ ω is split by at least one A ∈ S. A reaping family R
is a family of infinite subsets of ω such that there is no infinite subset of

ω which splits every member of R. The splitting number s is the smallest

cardinality of any splitting family and the reaping number r is the smallest

cardinality of any reaping family.

We write ωω and Sym(ω) for the set of functions and the set of permu-

tations, respectively, on ω. We extend the concepts of splitting and reaping

families to families of functions and permutations on ω. To be precise, we

say f ∈ ωω splits g ∈ ωω if both g∩f and g\f are infinite. A splitting family
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S of functions (permutations) is a family of functions (permutations) on ω

such that each g ∈ ωω (g ∈ Sym(ω)) is split by an f ∈ S. A reaping family

R of functions (permutations) is a family of functions (permutations) on ω

such that there is no function (permutation) on ω which splits every mem-

ber of R. We define corresponding cardinal characteristics sf , sp, rf , and

rp as follows.

sf = min{|S| : S ⊆ ωω is a splitting family},
sp = min{|S| : S ⊆ Sym(ω) is a splitting family},
rf = min{|R| : R ⊆ ωω is a reaping family}, and

rp = min{|R| : R ⊆ Sym(ω) is a reaping family}.

It is easy to see that the above definitions are well-defined since ωω and

Sym(ω) are splitting and reaping families of functions and permutations

respectively.

First, we shall show that sf = non(M) and rf = cov(M). The following

is Theorem 5.9 in [3]. The first statement is also from [1, Corollary 1.8].

Theorem 2.1.

cov(M) = min{|C| : C ⊆ ωω ∧ ¬∃f ∈ ωω ∀g ∈ C (f ∩ g is infinite)}, and

non(M) = min{|C| : C ⊆ ωω ∧ ∀f ∈ ωω ∃g ∈ C (f ∩ g is infinite)}.

Theorem 2.2. sf = non(M) and rf = cov(M).

Proof. It follows immediately from the above theorem that rf ≤
cov(M) and non(M) ≤ sf . To show that sf ≤ non(M), let C ⊆ ωω

be an infinite family such that for all f ∈ ωω, there exists a g ∈ C such that

f ∩ g is infinite.

For each g ∈ C, define g̃ ∈ ωω by

g̃(n) =

{
g(n) if n is even,

g(n) + 1 if n is odd.

Let D = C ∪ {g̃ : g ∈ C}. To show that D is a splitting family, let f ∈ ωω.

By the property of C, there is a g ∈ C such that f ∩ g is infinite. If f \ g
is finite, then there is an n0 < ω such that f(n) = g(n) for all n ≥ n0, and

hence g̃ splits f . Otherwise, g splits f . Thus sf ≤ |D| = |C|. Since C is

arbitrary, sf ≤ non(M).
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To show that cov(M) ≤ rf , let C ⊆ ωω be an infinite family such that

|C| < cov(M). We shall show that C is not a reaping family.

For each g ∈ C, let g ⊕ 1 ∈ ωω be defined by (g ⊕ 1)(n) = g(n) + 1. Let

D = C ∪ {g⊕ 1 : g ∈ C}. Then |D| = |C| < cov(M). By the above theorem,

there is an f ∈ ωω such that f ∩ h is infinite for any h ∈ D. Consider

a g ∈ C. Since f ∩ (g ⊕ 1) is infinite, there are infinitely many k ∈ ω such

that f(k) 6= g(k). Hence g \ f is infinite. Since f ∩ g is infinite, f splits g.

Therefore, C is not a reaping family. �

Next, we shall show that cov(M) ≤ rp. The proofs make use of Martin’s

Axiom. We start with some relevant definitions and known facts.

Definition 2.3. MAP(κ) is the statement that whenever D is a family

of dense subsets of a poset P with |D| ≤ κ, there exists a filter G on P such

that G ∩D 6= ∅ for all D ∈ D.

By the Generic Filter Existence Lemma [7, Lemma III.3.14], we obtain

the following theorem.

Theorem 2.4. MAP(κ) holds for any poset P and κ ≤ ℵ0.

Definition 2.5. A subset C of a poset P is centered if, for any n ∈ ω
and any p1, p2, ..., pn ∈ C there is a q ∈ P such that q ≤ pi for all i. P is

σ-centered if P is a countable union of centered subsets of P.

Definition 2.6. mσ is the least κ such that there is a σ-centered poset

P for which MAP(κ) fails, and mctbl is the least κ such that there is

a countable poset P for which MAP(κ) fails.

We have shown, in Theorem 2.2, that rf = cov(M). Now, we show that

cov(M) ≤ rp by using the following theorem which is Proposition (d) in

[5].

Theorem 2.7. mctbl = cov(M).

Theorem 2.8. cov(M) ≤ rp.

Proof. It suffices to show that mctbl ≤ rp. To show this, let C ⊆ Sym(ω)

be such that ℵ0 ≤ |C| < mctbl. Consider the poset P = Fn1−1(ω, ω), i.e.

{s ⊆ ω × ω : s is a finite injection}. For each n ∈ ω and f ∈ C, let

An = {p ∈ P : n ∈ dom(p) ∩ ran(p)},
Bn,f = {p ∈ P : ∃k ≥ n ∃` ≥ n (p(k) = f(k) ∧ p(`) 6= f(`))}.
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Then An and Bn,f are dense in P for any n ∈ ω and f ∈ C. Let

D = {An : n ∈ ω} ∪ {Bn,f : n ∈ ω, f ∈ C}.
Since D is of size < mctbl, there is a filter G on P such that G ∩ An 6= ∅ 6=
G ∩ Bn,f for any n ∈ ω and f ∈ C. Let g =

⋃
G. Then g ∈ Sym(ω) and

for any n ∈ ω and any f ∈ C, we have that g(k) = f(k) and g(`) 6= f(`) for

some k, ` ≥ n. Hence for any f ∈ C, f ∩ g and f \ g are infinite, so g splits

f . Thus C is not a reaping family. �

It is well-known that p ≤ s (cf. [6, Chapter 9]). Now, we shall use

the fact below to show that p is also a lower bound of sp. The following

theorem is from Bell ([2]), and is also Theorem III.3.61 in [7].

Theorem 2.9. mσ = p.

Theorem 2.10. p ≤ sp.

Proof. It suffices to show that mσ ≤ sp. To show this, let C ⊆ Sym(ω)

be such that ℵ0 ≤ |C| < mσ. Define the poset P = Fn1−1(ω, ω) × [C]<ω,

where (s, E) ≤ (t, F ) if and only if

s ⊇ t, E ⊇ F and ∀n ∈ dom(s) \ dom(t) ∀f ∈ F (s(n) 6= f(n)).

Clearly this poset is σ-centered, as the set {(s, E) ∈ P : E ∈ [C]<ω} is

centered for any fixed s and Fn1−1(ω, ω) is countable. For each n ∈ ω and

f ∈ C, let

An = {(s, E) ∈ P : n ∈ dom(s) ∩ ran(s)},
Bf = {(s, E) ∈ P : f ∈ E}.

It is easy to see that Bf is dense in P for all f ∈ C. To show that An is

dense in P for any n ∈ ω, let n ∈ ω and (s, E) ∈ P. Since s is a finite

function and E is a finite set of injections, we can pick k ∈ ω \ dom(s) and

` ∈ ω \ ran(s) so that (k, n), (n, `) /∈
⋃
E. We choose

t =


s if n ∈ dom(s) ∩ ran(s),

s ∪ {(k, n)} if n ∈ dom(s) \ ran(s),

s ∪ {(n, `)} if n ∈ ran(s) \ dom(s),

s ∪ {(k, n), (n, `)} if n /∈ dom(s) ∪ ran(s).

Then (t, E) ≤ (s, E) where (t, E) ∈ An. So An is dense in P. Let

D = {An : n ∈ ω} ∪ {Bf : f ∈ C}.
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Since D is of size |C| < mσ, there is a filter G on P such that G∩An 6= ∅ 6=
G ∩Bf for any n ∈ ω and f ∈ C. Let g =

⋃
dom(G). Then g ∈ Sym(ω).

To show that g ∩ f is finite for any f ∈ C, let f ∈ C. Since G ∩Bf 6= ∅,
there is a (s, E) ∈ G such that f ∈ E. Let m ∈ dom(g) \ dom(s). We

shall show that g(m) 6= f(m). Since (m, g(m)) ∈ g =
⋃

dom(G), there

is a (t, F ) ∈ G such that (m, g(m)) ∈ t. Since G is a filter, there is

a (s′, E′) ∈ G such that (s′, E′) ≤ (s, E) and (s′, E′) ≤ (t, F ). Then

m ∈ dom(s′) \ dom(s) and hence g(m) = t(m) = s′(m) 6= f(m). Therefore,

g(m) 6= f(m) for any m ∈ dom(g) \ dom(s). So {m : g(m) = f(m)} ⊆
dom(s), which implies that g ∩ f is finite. Therefore, C is not a splitting

family. �

The above proof shows the relationship between p and sp by using the

fact that mσ = p. However, since p ≤ s ≤ non(M), a stronger result can

be obtained as shown in the following theorem. The notation ∃∞n means

“there are infinitely many” and ∀∞n means “for all but finitely many”.

Theorem 2.11. non(M) = sp.

Proof. We first show that sp ≤ non(M). Note that Sym(ω) is home-

omorphic to ωω, so the notion of “the smallest size of a meagre set” in

both (topological) spaces are the same. Let S ⊆ Sym(ω) be such that

|S| < sp. We shall show that S is meagre in Sym(ω). By the definition of

sp, there is a g ∈ Sym(ω) such that, for each f ∈ S, ∀∞n[g(n) 6= f(n)] or

∀∞n[g(n) = f(n)]. Let S0 = {f ∈ S : ∀∞n[g(n) 6= f(n)]}. We claim that

S0 is meagre in Sym(ω). For each n < ω, let

Cn = {f ∈ Sym(ω) : ∀m > n[g(m) 6= f(m)]}.
It is straightforward to show that Cn is closed nowhere dense and S0 ⊆⋃

n<ω Cn, and hence S0 is meagre. Since S \ S0 = {f ∈ S : ∀∞n[g(n) =

f(n)]} is countable (and hence is meagre), S = S0 ∪ (S \ S0) is meagre.

We next show that non(M) ≤ sp. Let S ⊆ Sym(ω) be such that

|S| < non(M), and we shall show that S is not a splitting family.

Claim. There exists an injection f ∈ ωω such that f(n) > n for all

n < ω and for all q ∈ S, ∀∞n[f(n) 6= q(n)] and ∀∞n[f(n) 6= q−1(n)].

Proof. Let π : ω2 → ω be a one-to-one map such that π(n,m) > n for

all n,m < ω. For any q ∈ Sym(ω), we define q+ ∈ ωω by

q+(n) =

{
m if q(n) = π(n,m),

0 otherwise.
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Put S−1 = {p−1 : p ∈ S} and S+ = S ∪ S−1 ∪ {q+ : q ∈ S ∪ S−1}.
Since |S| < non(M), by Theorem 2.1, there exists an f̂ ∈ ωω such that

for all g ∈ S+, ∀∞n[f̂(n) 6= g(n)]. In particular, for each q ∈ S ∪ S−1,
∀∞n[f̂(n) 6= q+(n)]. Define f ∈ ωω by f(n) = π(n, f̂(n)). Clearly f is

one-to-one and f(n) > n for all n < ω. Notice that

∀q ∈ S ∪ S−1 ∀n < ω [f(n) = q(n)→ f̂(n) = q+(n)].

Hence, for each q ∈ S ∪ S−1, ∀∞n[f(n) 6= q(n)], and the proof of the claim

is complete.

Let f(k) = nk, and note that nk > k for all k and nk’s are distinct.

Define p ∈ Sym(ω) recursively as follows. Suppose we have already defined

p�k. If there exists an i < k such that p(i) = k then put p(k) = i; otherwise,

put p(k) = nk. Note that, after the construction is done, if p(x) = y then

(x, y) = (k, nk) or (x, y) = (nk, k) for some k. So p(p(x)) = x for all x < ω,

and hence p is bijective.

We finally show that ∀∞k[p(k) 6= q(k)] for all q ∈ S. Suppose to the

contrary that there is a q ∈ S such that ∃∞k[p(k) = q(k)]. Let X = {k :

p(k) = nk}. Note that ω \X = {nk : p(nk) = k}. Then either

∃∞k ∈ X[p(k) = q(k)] or ∃∞i ∈ ω \X[p(i) = q(i)].

In the former case, we have ∃∞k[f(k) = nk = p(k) = q(k)]. In the latter

case, we have ∃∞k[k = p(nk) = q(nk)], so ∃∞k[q−1(k) = nk = f(k)]. Both

cases contradict the above claim. Therefore S is not a splitting family. �

.3 Independent families

An infinite set I ⊆ P(ω) is said to be an independent family (or shortly i.f.)

if, for any disjoint finite sets A,B ⊆ I,
⋂
A \

⋃
B is infinite. We interpret⋂

∅ = ω. The cardinal i is defined as the least cardinality of a maximal

independent family. We extend the concept of independent families to fam-

ilies of functions and permutations on ω and define corresponding cardinal

characteristics if and ip as follows.

if = min{|I| : I ⊆ ωω is a maximal independent family} and

ip = min{|I| : I ⊆ Sym(ω) is a maximal independent family}.

Since there is an i.f. of permutations of cardinality c (see Proposition

2.1 in [8]), if and ip are well-defined.
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We shall show that cov(M) is a lower bound of ip (and also if ). First,

we need the following fact.

Fact. cov(M) is the least cardinality of a family of open dense subsets of
ωω whose intersection is empty.

This fact follows from Proposition (a) in [5] by viewing a Polish space

X as the Baire space ωω (with the basic open sets of the form [p] = {f ∈
ωω : f ⊇ p} for p ∈ <ωω) together with the fact from topology that

“a subset O of a topological space X is open dense if and only if X \ O is

closed nowhere-dense”. Note the fact that D ⊆ P is dense in the Cohen

poset P = <ωω if and only if [D] = {f ∈ ωω : f ⊇ p for some p ∈ D} is

open dense in the Baire space ωω.

For an infinite family C ⊆ ωω, let

bc(C) =
{⋂

A \
⋃
B : A,B ∈ fin(C), A ∩B = ∅ and A 6= ∅

}
.

Then each member of bc(C) is a function and is an injection if C is a family

of permutations. Notice that C is an independent family if and only if every

member of bc(C) is infinite.

Theorem 3.1. cov(M) ≤ ip.

Proof. Let C ⊆ Sym(ω) be an i.f. of permutations such that ℵ0 ≤
|C| < cov(M). We shall show that C is not maximal.

For any p ∈ <ωω ∪ ωω, let p̂ be the one-to-one sequence obtained from

p by removing all repetitions of each occurrence of p(i) except its first one.

Let P = <ωω and for each x ∈ bc(C) and n < ω, let

Dx,n =
{
p ∈ P : ∃k, ` ≥ n

(
k, ` ∈ dom(p̂) ∩ dom(x) ∧ p̂(k) = x(k)

∧ p̂(`) 6= x(`)
)}
,

An ={p ∈ P : n ∈ ran(p)}.

It is easy to see that each An is dense in P. To show that each

Dx,n is dense in P, let x ∈ bc(C), n < ω, and p ∈ P. Pick distinct

k, ` ≥ max{n,dom(p)} such that k, ` ∈ dom(x) and k < ` where x(k)

and x(`) are not in ran(p). Choose a q ∈ P such that q ⊇ p and the k-

th and the `-th unrepeated elements are equal to x(k) and not equal to

x(`), respectively. Rigorously, let s = dom(p), t = |ran(p)|, pick distinct

a0, a1, ..., ak−t−1, b0, b1, ..., b`−k−1 ∈ ω \ (ran(p) ∪ {x(k), x(`)}), and define

q = p∪{(s+ i, ai) : i < k− t}∪ {(s− t+ k, x(k))}∪ {(s− t+ k+ 1 + j, bj) :

j < `− k}. Thus q̂(k) = x(k) and q̂(`) 6= x(`), so q ∈ Dx,n. Let
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D = {[Dx,n] : x ∈ bc(C) and n < ω} ∪ {[An] : n < ω}
Then D is a family of open dense subsets of the Baire space ωω where

|D| ≤ |C| < cov(M). By the above fact,
⋂
D 6= ∅, and we can pick an

element f ∈
⋂
D. Thus x ∩ f̂ and x \ f̂ are infinite where f̂ ∈ Sym(ω). So

C ∪ {f̂} is an i.f. of permutations. �

Another way to prove the above theorem is, by using the fact that

mctbl = cov(M) and showing that mctbl ≤ ip instead. This can be done

by consider the countable poset Fn1−1(ω, ω). We leave the details for the

reader.

By simplifying the proof of Theorem 3.1, we can show that cov(M) ≤ if .

However, the following theorem gives a better lower bound of if . Recall that

the cardinal d is the dominating number, the smallest size of a dominating

family of functions on ω.

Theorem 3.2. d ≤ if .

Proof. Suppose I ⊆ ωω is an independent family with ℵ1 ≤ |I| < d.

We shall show that I is not maximal.

Take a model M of sufficiently large finite fragment of ZFC with I ∈M
and |M | = |I|.

Claim. There is a strictly increasing sequence {nk : k < ω} ⊆ ω with

n0 = 0 so that for any g ∈ M ∩ ωω, there are infinitely many k such that

g(nk) < nk+1.

Proof. Since |M | < d, ωω ∩M is not a dominating family. Hence there

is a strictly increasing function f ∈ ωω such that ∃∞n[g(n) < f(n)] for all

g ∈ ωω ∩M . Define n0 = 0 and nk+1 = f(nk) for each k < ω.

Let g ∈ ωω ∩M . We shall show that ∃∞k[g(nk) < nk+1]. In M , define

G ∈ ωω ∩M by G(0) = 1 and

G(n+ 1) = max ({g(i) : i ≤ G(n)} ∪ {G(n)}) + 1.

If there is an ` < ω such that |ran(G) ∩ [nk, nk+1)| ≤ 1 for all k ≥ `,

then G(k) ≥ nk+1 = f(nk) ≥ f(k) for all k ≥ n` + 1, which is impossible

by the property of f . So there are infinitely many k such that |ran(G) ∩
[nk, nk+1)| ≥ 2. For such a k, there is an ak such that nk ≤ G(ak) < G(ak+

1) < nk+1 and hence, by the definition of G, g(nk) ≤ G(ak + 1) < nk+1,

and the proof of the claim is done.
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Let {fk : k < ω} ⊆ I be a sequence in M without repetitions. Define

h =
⋃
k<ω

fk�[nk, nk+1).

We shall show that I ∪ {h} is an independent family and h /∈ I. To show

this, let A,B ⊆ I be disjoint finite sets. Note that h and fk agree on

[nk, nk+1) for each k. It suffices to show that

∃∞k < ω ∃a ∈ [nk, nk+1) [∀f ∈ A[f(a) = fk(a)] ∧ ∀g ∈ B[g(a) 6= fk(a)]] .

Choose an ` < ω so that fk /∈ A∪B for all k > `. Since, for any n with

` < n < ω, three sets A, B and {fk : ` < k ≤ n} are disjoint subset of an

independent family I, working in M , we can construct a d ∈ ωω ∩M such

that for any n, k with ` < k ≤ n,

∃a ∈ [n, d(n)) [∀f ∈ A[f(a) = fk(a)] ∧ ∀g ∈ B[g(a) 6= fk(a)]].

Since there are infinitely many k such that d(nk) < nk+1 (by the above

claim), we are done. �

.4 Summary and open problems

We summarise relationships among the cardinals studied in this paper and

other well-known ones in the following diagram. A line connecting two

cardinals indicates that the lower cardinal is less than or equal to the upper

one.

ℵ1

p

s cov(M)

r d

i

c

non(M)

ae ap if ip

sf =

= rf

= sp

rp
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By Cohen forcing, we have that ℵ1 = non(M) < cov(M) = c is rela-

tively consistent with ZFC (cf. [3, Section 11.3, pages 472–473]). Therefore,

the following statement is consistent with ZFC:

ℵ1 = p = s = sf = sp = non(M) < cov(M) = r = rf = rp = if = ip = i = c.

By Random forcing, we have that ℵ1 = s = cov(M) < non(M) = r = c

is relatively consistent with ZFC (cf. [3, Section 11.4, pages 473–474]).

Thus it is relatively consistent with ZFC that

ℵ1 = p = rf = s = cov(M) < non(M) = r = sf = sp = ae = ap = i = c.

Since there are many models of ZFC in which cov(M) = ℵ1 and d = ℵ2,
e.g., Laver, Mathias, or Miller forcing (cf. [3, Sections 11.7-11.9, pages 478–

479]), by Theorem 3.2, cov(M) < if in these models.

From the above results, there are some interesting open problems below.

1. Is rp = cov(M)?

2. Is d a lower bound of ip?

3. Is there any model of ZFC in which cov(M) < ip?
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