Identyfikatory
Warianty tytułu
Effect of Chemical-thermal Modification of Excess Sludge on the Volatile Fatty Acids Generation During Methane Fermentation Process
Języki publikacji
Abstrakty
Kinetics of the changes taking place in the anaerobic sludge stabilization condition for the slow pace of biochemical decomposition of organic substances, affecting the length of time required to stop sludge digesters. The method of chemical-thermal treatment of sludge, increases the degree of disintegration of the particles, determining the acceleration of the hydrolysis process, the process of limiting the anaerobic stabilization. The use of excess sludge hybrid treatment prior to anaerobic stabilization process affects the intensification of subsequent phases of methane fermentation. The aim of the study was to determine the effect of chemical-thermal sludge modified in the following during the hydrolysis process increase the production of volatile fatty acids, and also obtained at this stage of the process, the digested degree of sludge. Excess sludge, which has been conditioned against anaerobic stabilization process was more susceptible to the generation of volatile fatty acids. Ability to transform organic matter is an important factor in the process of anaerobic stabilization. The effect of increase in susceptibility to biodegradation of excess sewage was evaluated on the basis of COD and VFA levels in sewage sludge that have been submitted to processes of disintegration of thermal, chemical, and chemical-thermal, relative to baseline. In the case of 8-daily methane fermentation of raw sewage over-the maximum rate of COD and VFA 1123 mg O2/dm3, respectively, and 771.43 mg CH3COOH/dm3 recorded on the 3rd day of the process. During the 8-daily anaerobic digestion of excess sewage disintegrated by hybrid method, i.e. with peracetic acid at a dose of 2.5 cm3 CH3COOOH/dm3, of sludge and then heat at 70°C for a period of 6 h maximum COD value was recorded in the age of initiation of the process – 5,616.67 mg O2/dm3, while the maximum value of the VFA – 3600 mg CH3COOH/dm3, on the 4th day of the process.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2054--2070
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
Bibliografia
- 1. Bering H.: 100 lat kwasu nadoctowego, stara substancja z nowymi perspektywami. Aseptyka, nr 2, 15–17 (2003).
- 2. Bień J. B.: Osady ściekowe – teoria i praktyka. Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2002.
- 3. Bień J., Kamizela T., Kowalczyk M., Mrowiec M.: Possibilities of gravitational and mechanical separation of sonicated activated sludge suspensions. Environment Protection Engineering, 35(2), 67–7 (2009).
- 4. Dezintegracja osadów ściekowych – informacje podstawowe, http://www.oczyszczanie-sciekow.pl, 05.2011.
- 5. Dz. U. L. 135 z 30 maja 1991 r. (Polskie Wydanie Specjalne, Rozdział 15, Tom 02, P. 26–30).
- 6. Erden Kaynak G., Filibelt A.: Assessment of fenton process as a minimization technique for biological sludge: Effects on anaerobic sludge bioprocessing. Journal of Residuals Science and Technology, Volume 5, Issue 3, 151–160 (2008).
- 7. Erden, G., Filibeli, A.: Improving anaerobic biodegradability of biological sludges by Fenton pre-treatment: Effects on single stage and two-stage anaerobic digestion. Desalination, Volume 251, Issue 1-3, 58–63 (2010).
- 8. Grosser A., Kamizela T., Neczaj E.: Oczyszczanie ścieków z produkcji płyt pilśniowych wspomagane polem ultradźwiękowym w reaktorze SBR. Inżynieria i Ochrona Środowiska, Tom 12, nr 4, 295–305 (2009).
- 9. International Measurements Standards ISO 7027.
- 10. Kim D.-H., Jeong E., Oh S.-E., Shin H.-S.: Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration. Water Research, Volume 44, Issue 10, 3093–3100 (2010).
- 11. Kwarciak A., Bohdziewicz J., Mielczrek K., Puszczało E.: Influence of Ultrasound Field on Co-Treatment Efficiency of Landfill Leachate and Synthetic Wastewater in Hybrid System Biological – Nanofiltration Process. Polish J. of Environ. Stud. Vol.18, nr 3A, 214–219 (2009).
- 12. Appels L., Van Assche A., Willems K., Degreve J., Van Impe J., Dewil R.: Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresource Technology, 102, 4124–4130 (2011).
- 13. Malej J.: Generowanie lotnych kwasów tłuszczowych ze strumienia ścieków surowych oraz niektóre problemy ścieków dowożonych taborem asenizacyjnym. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 3, 103–128 (2001).
- 14. Meyer B.: Kwas nadoctowy jako substancja czynna w dezynfekcji. Asceptyka, nr 3, 10–11 (2002).
- 15. Myszograj S.: Biochemical methane potential as indicator of biodegradability of organic matter in anaerobic digestion process. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 13, 1245–1260 (2011).
- 16. Myszograj S.: Fermentacja metanowa osadów ściekowych hydrolizowanych termochemicznie. Wydawnictwo Politechniki Częstochowskiej, tom 10, nr 2, 141–152 (2007).
- 17. Neczaj E., Kacprzak M., Lach J., Okoniewska E.: Effect of sonication on combined treatment of landfill leachate and domestic sewage in SBR reactor. Desalination, Vol. 204, 227–233 (2007).
- 18. Neyens E., Baeyens J.: A review of thermal sludge pre-treatment processes to improve dewater ability. Journal of Hazardous Materials, B98, 51–67 (2003).
- 19. Podedworna J., Umiejewska K.: Technologia osadów ściekowych. Oficyna wydawnicza Politechniki Warszawskiej, Warszawa, 2008.
- 20. Polskie Normy (PN-75/C-04616/04), Wydawnictwo Normalizacyjne, Warszawa.
- 21. Polskie Normy (PN-EN-12879), Wydawnictwo Normalizacyjne, Warszawa.
- 22. Rajczyk-Janosz M,. Wiśniowska E., Wołczyński M.: Wpływ kondycjonowania osadów ściekowych kwasem nadoctowym na zmiany ich właściwości fizyczno-chemicznych. Inżyniera i Ochrona Środowiska, t. 12, nr 1, 51–63 (2009).
- 23. Skiadas I., Gavala H., Lu J., Ahring B.: Thermal pretreatment of primary and secondary sludge at 70°C prior to anaerobic digestion. 10-th World Congress on Anaerobic Digestion, Nat. Res. Council Canada, Montreal, 1121–1124 (2004).
- 24. Wolski P., Wolny L.: Effect of disintegration and fermentation on the susceptibility of sewage sludge to dewatering. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 13, 1697–1706 (2011).
- 25. Yang S.-S., Guo W.-Q. , Cao G.-L., Zheng H.-S., Ren N.-Q.: Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresource Technology, 124, 347–354 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-733809c6-8e2b-4200-aa52-ad98b0591816