PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recykling chemiczny tworzyw sztucznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chemical recycling of plastics
Języki publikacji
PL
Abstrakty
EN
Plastics are currently used in almost every branch of industry. Their popularity is due to excellent mechanical properties, durability combined with low weight. Global production of plastics in 2020 reached 387 million tons and a great amount of waste from plastics is generated as they are usually non-biodegradable and often are used only once before disposal. Since the 1970s, the problem of plastics pollution started to be noticed, and then the first regulations on their production, limiting and management options were introduced. There are several methods preventing the plastics waste going to landfill. Among the plastics management methods are mechanical recycling, solvent based purification, chemical recycling, energy recovery and biodegradation (Figure 1). Mechanical recycling is the reprocessing of the plastic waste to its original form (polymer) using simple physical operations like grinding, separating, extruding. This option is the most popular for thermoplastics as they are easily reprocessed and the cost operations are low. During solvent based purification the plastics products are purified from different additional compounds like colorants, antioxidants, fillers to obtain original polymer. Biodegradation is available only for some polymers. Energy recovery process releases the energy contained within plastics through combustion and is suitable only for materials which are difficult to recycle. Nowadays chemical recycling of plastic waste is the most noteworthy polymers recovery technique as it is complementary to mechanical recycling. Chemical recycling can be divided into two main processes: chemical and thermal depolymerization (Figure 2). Thermal depolymerization processes are conducted using heat and in the absence of oxygen, or with limited access to oxygen or other compounds (H2, CO2). It converts plastics into monomers or basic chemical (hydrocarbons, oil, H2O) and is typically used for polyolefins, PMMA, PS. During chemical depolymerization plastics are broken down into oligomers or monomers as a result of a chemical reaction with a low molecular weight agent (H2O, alcohols, amines, glycols, acids) and usually refers to condensation and addition polymers (PET, PC, PA, PU). Chemical recycling enables for multiple recycling of plastics to its monomers, which can be polymerized to produce the original polymer. The manuscript presents a literature review on chemical recycling of commonly used plastics such as vinyl polymers, polycondensation polymers, thermosets and polymer blends.
Rocznik
Strony
157--181
Opis fizyczny
Bibliogr. 79 poz., tab., wykr.
Twórcy
  • Katedra Technologii Środowiska, Wydział Chemii Uniwersytetu Gdańskiego, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] Plasctics Europe, “Plastics-the Facts 2021 An analysis of European plastics production, demand and waste data.” 2021.
  • [2] European Parliament and Council of the European Union, Directive 2008/98/EC, 2008, L 312, 1.
  • [3] M. Okan, H.M. Aydin, M. Barsbay, J. Chem. Technol. Biotechnol., 2021, 94, 8.
  • [4] J. Datta, P. Kopczyńska, Crit. Rev. Environ. Sci. Technol., 2016, 46, 905.
  • [5] N. Mohanan, Z. Montazer, P.K. Sharma, D.B. Levin, Front. Microbiol., 2020, 11, 580709.
  • [6] Z.O.G. Schyns, M. P. Shaver, Macromol. Rapid Commun., 2021, 42, 2000415.
  • [7] K. Ragaert, L. Delva, K. van Geem, Waste Manage., 2017, 69, 24.
  • [8] A. Dorigato, Adv. Ind. Eng. Polym. Res., 2021, 4, 53.
  • [9] I. Stachurek, Zeszyty Naukowe Wyższej Szkoły Zarządzania Ochroną Pracy w Katowicach, 2012, 1, 71.
  • [10] Pat. USA 3941066, 1976.
  • [11] Pat. USA 3117940, 1964.
  • [12] Pat. USA 3345352, 1967.
  • [13] Pat. USA 3901951, 1975.
  • [14] Pat. USA 2 998 395, 1961.
  • [15] P. Jutrzenka Trzebiatowska, H. Beneš, J. Datta, React. Funct.l Polym., 2019, 139, 25.
  • [16] E.V. Antonakou, D.S. Achilias, Waste and Biomass Valorization, 2013, 4, 9.
  • [17] I. Vollmer, M. Jenks, M. Roelands, R. White, T. van Hatmelen, P. de Wild, G. van der Laan, F. Meirer, J. Keurentjes, B. Weckhuysen, Angew. Chem. Int. Ed., 2020, 59, 15402.
  • [18] D.S. Achilias, C. Roupakias, P. Megalokonomos, A.A. Lappas, Ε.V. Antonakou, J. Hazard. Mater., 2007, 149, 536.
  • [19] G. Grause, A. Buekens, Y. Sakata, A. Okuwaki, T. Yoshioka, J. Mater. Cycles Waste Manage. 2011, 13, 265.
  • [20] D. Hariadi, S. M. Saleh, R. Anwar Yamin, S. Aprilia, Therm. Sci. Eng. Prog., 2021, 23, 100872.
  • [21] Y. Peng, Y. Wang, L. Ke, L. Dai, Q. Wu, K. Cobb, Y. Zeng, R. Zou, Y. Liu, R. Ruan, Energy Convers. Manage., 2022, 254, 115243.
  • [22] L.S. Diaz-Silvarrey, K. Zhang, A.N. Phan, Green Chem., 2018, 20, 1813.
  • [23] J. Huang, A. Veksha, W. P. Chan, A. Giannis, G. Lisak, Renew. Sustain. Energ. Rev., 2022, 54, 111866.
  • [24] A.K. Błędzki, Recykling materiałów polimerowych, WNT, Warszawa, 1997.
  • [25] D.S. Achilias, L. Andriotis, I.A. Koutsidis, D.A. Louka, N.P. Nianias, P. Siafaka, I. Tsagkalias, G. Tsintzou, Recent Advances in the Chemical Recycling of Polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA), InTech Open, Londyn, 2012.
  • [26] C. Muhammad, J. A. Onwudili, P. T. Williams, Energy Fuels, 2015, 29, 2601.
  • [27] M. Solis, S. Silveira, Waste Manage., 2020, 105,128.
  • [28] G. Gałko, M. Rejdak, D. Tercki, M. Bogacka, M. Sajdak, J. Anal. Appl. Pyrolysis, 2021, 154, 105017.
  • [29] D. Jubinville, E. Esmizadeh, S. Saikrishnan, C. Tzoganakis, T. Mekonnen, Sustainable Mater. Technol., 2020, 25, e00188.
  • [30] F. Keller, R.L. Voss, R.P. Lee, B. Meyer, Resour. Conserv. Recycl., 2020, 179, 106106.
  • [31] S.M. Al-Salem, P. Lettieri, J. Baeyens, Waste Manage., 2009, 29, 2625.
  • [32] https://www.regenyxllc.com/, dostęp 07.02.2022
  • [33] https://www.encina.com/, dostęp 07.02.2022
  • [34] https://enerkem.com/ , dostęp 07.02.2022
  • [35] S. Thiyagarajan, E. Maaskant-Reilink, T.A. Ewing, M.K. Julsing, J. van Haveren, RSC Adv., 2022, 12, 947.
  • [36] J.C. Worch, A.P. Dove, ACS Macro Lett., 2020, 9, 1494.
  • [37] H. Beneš, R. Černá, A. Ďuračková, aP. Látalová, J. Polym. Environ., 2012, 20, 175.
  • [38] X. Song, H. Wang, X. Zheng, F. Liu, S. Yu, J. Appl. Polym. Sci., 2014, 131, 40817.
  • [39] S. Liu, L. Zhou, L. Li, S. Yu, F. Liu, C. Xie, Z. Song, J. Polym. Res., 2013, 20, 310.
  • [40] Z. Guo, K. Lindqvist, H. de la Motte, J. Appl. Polym. Sci., 2018, 135, 6.
  • [41] S.R. Shukla, V. Palekar, N. Pingale, J. Appl. Polym. Sci., 2008, 110, 501.
  • [42] Q. Suo, J. Zi, Z. Bai, S. Qi, Catal. Lett., 2017, 147, 240.
  • [43] C.H. Wu, LY. Chen, R.J. Jeng, S.A. Dai, ACS Sustain. Chem. Eng., 2018, 6, 8964.
  • [44] E. Barnard, J.J. Rubio Arias, W. Thielemans, Green Chem., 2021, 23, 3765.
  • [45] D. Simón, A.M. Borreguero, A. de Lucas, J.F. Rodríguez, Waste Manage., 2018, 76, 147.
  • [46] J. Datta, M. Rohn, Polimery, 2007, 52, 579.
  • [47] J. Datta, K. Błażek, M. Włoch, R. Bukowski, J. Polym. Environ, 2018, 26, 4415.
  • [48] P.J. Trzebiatowska, I. Deuter, J. Datta, React. Funct. Polym, 2017, 119, 20.
  • [49] V. Jamdar, M. Kathalewar, A. Sabnis, J. Polym. Environ., 2018, 26, 2601.
  • [50] J. Sadowska-Paciorek, B. Czupryński, J. Liszkowska, 2016, 48, 340.
  • [51] R. Piñero, J. García, M.J. Cocero, Green Chem., 2005, 7, 380.
  • [52] E.V. Antonakou, D.S. Achilias, Waste and Biomass Valori., 2013, 4, 9.
  • [53] S. Ügdüler, K. Van Geem, R. Denolf, M. Roosen, N. Mys, K. Ragaert, S. De Meester, ., Green Chem., 2020, 22, 5376.
  • [54] K.R. Delle Chiaie, F.R. McMahon, E.J. Williams, M.J. Price, A.P. Dove, Polym. Chem., 2020, 11, 1450.
  • [55] D. Simón, A. de Lucas, J.F. Rodríguez, A.M. Borreguero, Polym. Degrad. Stab., 2016, 133, 119.
  • [56] S. Chuayjuljit, C. Norakankorn, V. Pimpan, J. Met. Mater. Miner., 2002, 12, 19.
  • [57] C.S. Bhogle, A.B. Pandit, Ultrason. Sonochem., 2019, 58, 104667.
  • [58] U. Češarek, D. Pahovnik, E. Žagar, ACS Sustain. Chem. Eng., 2020, 8, 16274.
  • [59] https://gr3n-recycling.com/ , dostęp 07.02.2022
  • [60] https://ioniqa.com/, dostęp 07.02.2022
  • [61] https://www.perpetual-global.com/, dostęp 07.02.2022
  • [62] https://www.carbios.com/en/, dostęp 07.02.2022
  • [63] https://garbo.it/en/chempet/, dostęp 07.02.2022
  • [64] https://www.rampf-group.com , dostęp 07.02.2022
  • [65] https://www.repsol.com/en/products-and-services/chemicals/news/repsol-construira-puertollano-primera-planta-reciclado-poliuretano-espana0/index.cshtml, dostęp 07.02.2022
  • [66] https://www.hs-anlagentechnik.de/de/recyclingreaktoren-fuer-pu-reststoffe.html, dostęp 07.02.2022
  • [67] https://www.covestro.com/press/closing-the-loop-for-polyurethane-mattresses-public, dostęp 07.02.2022
  • [68] https://www.aquafil.com/sustainability/econyl/, dostęp 07.02.2022
  • [69] M. Kazemi, S. Faisal Kabir, E.H. Fini, Res. Conserv. Recycl., 2021, 174, 105776.
  • [70] J.I. Ozaki, S.K.I. Djaja, A. Oya, Ind. Eng. Chem. Res, 2000, 39, 245.
  • [71] T. Nakagawa, M. Goto, Polym. Degrad. Stab., 2015, 115, 16.
  • [72] W. Wang, B. Bai, W. Wei, C. Cao, H. Jin, International Journal of Hydrogen Energy, 2021, 46, 35121.
  • [73] World Business Council for Sustainable Development, Global ELT Management – a global state of knowledge on collection rates, recovery routes, and management methods, 2018.
  • [74] L. Bockstal, T. Berchem, Q. Schmetz, A. Richel, J. Cleaner Prod., 2019, 236, 117574.
  • [75] X. Colom, A. Faliq, K. Formela, J. Canavate, Polym. Test., 2016, 52, 200.
  • [76] W. Kaminsky, C. Mennerich, Z. Zhang, J. Anal. Appl. Pyrolysis, 2009, 85, 334.
  • [77] X. Li, X. Q. Deng, C. Dong, J. Braz. Chem. Soc., 2018, 29, 2169.
  • [78] Y. Tsuneizumi, M. Kuwahara, K. Okamoto, S. Matsumura, Polym. Degrad. Stab., 2010, 95, 1387.
  • [79] A. Carné Sánchez, S.R. Collinson, Eur. Polym. J., 2011, 47, 1970.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73377dd0-02ab-4245-bdcd-ab3be9086c69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.